Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KESIRAJU, S. SARVAŠ, M. PAVLÍČEK, T. MACAIRE, C. CIUBA, A.
Originální název
Strategies for Improving Low Resource Speech to Text Translation Relying on Pre-trained ASR Models
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper presents techniques and findings for improving the performance of low-resource speech to text translation (ST). We conducted experiments on both simulated and reallow resource setups, on language pairs English - Portuguese, and Tamasheq - French respectively. Using the encoder-decoder framework for ST, our results show that a multilingual automatic speech recognition system acts as a good initialization under low-resource scenarios. Furthermore, using the CTC as an additional objective for translation during training and decoding helps to reorder the internal representations and improves the final translation. Through our experiments, we try to identify various factors (initializations, objectives, and hyperparameters) that contribute the most for improvements in lowresource setups. With only 300 hours of pre-training data, our model achieved 7.3 BLEU score on Tamasheq - French data, outperforming prior published works from IWSLT 2022 by 1.6 points.
Klíčová slova
speech translation, low-resource, multilingual, speech recognition
Autoři
KESIRAJU, S.; SARVAŠ, M.; PAVLÍČEK, T.; MACAIRE, C.; CIUBA, A.
Vydáno
20. 8. 2023
Nakladatel
International Speech Communication Association
Místo
Dublin
ISSN
1990-9772
Periodikum
Proceedings of Interspeech
Ročník
2023
Číslo
08
Stát
Francouzská republika
Strany od
2148
Strany do
2152
Strany počet
5
URL
https://www.isca-speech.org/archive/pdfs/interspeech_2023/kesiraju23_interspeech.pdf
BibTex
@inproceedings{BUT185572, author="KESIRAJU, S. and SARVAŠ, M. and PAVLÍČEK, T. and MACAIRE, C. and CIUBA, A.", title="Strategies for Improving Low Resource Speech to Text Translation Relying on Pre-trained ASR Models", booktitle="Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH", year="2023", journal="Proceedings of Interspeech", volume="2023", number="08", pages="2148--2152", publisher="International Speech Communication Association", address="Dublin", doi="10.21437/Interspeech.2023-2506", issn="1990-9772", url="https://www.isca-speech.org/archive/pdfs/interspeech_2023/kesiraju23_interspeech.pdf" }