Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ZULUAGA-GOMEZ, J. NIGMATULINA, I. PRASAD, A. MOTLÍČEK, P. KHALIL, D. MADIKERI, S. TART, A. SZŐKE, I. LENDERS, V. RIGAULT, M. CHOUKRI, K.
Originální název
Lessons Learned in Transcribing 5000 h of Air Traffic Control Communications for Robust Automatic Speech Understanding
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Voice communication between air traffic controllers (ATCos) and pilots is critical for ensuring safe and efficient air traffic control (ATC). The handling of these voice communications requires high levels of awareness from ATCos and can be tedious and error-prone. Recent attempts aim at integrating artificial intelligence (AI) into ATC communications in order to lessen ATCos's workload. However, the development of data-driven AI systems for understanding of spoken ATC communications demands large-scale annotated datasets, which are currently lacking in the field. This paper explores the lessons learned from the ATCO2 project, which aimed to develop an unique platform to collect, preprocess, and transcribe large amounts of ATC audio data from airspace in real time. This paper reviews (i) robust automatic speech recognition (ASR), (ii) natural language processing, (iii) English language identification, and (iv) contextual ASR biasing with surveillance data. The pipeline developed during the ATCO2 project, along with the open-sourcing of its data, encourages research in the ATC field, while the full corpus can be purchased through ELDA. ATCO2 corpora is suitable for developing ASR systems when little or near to no ATC audio transcribed data are available. For instance, the proposed ASR system trained with ATCO2 reaches as low as 17.9% WER on public ATC datasets which is 6.6% absolute WER better than with "out-of-domain" but gold transcriptions. Finally, the release of 5000 h of ASR transcribed speech-covering more than 10 airports worldwide-is a step forward towards more robust automatic speech understanding systems for ATC communications.
Klíčová slova
air traffic control communications; automatic speech recognition and understanding; OpenSky Network; callsign recognition; ADS-B data
Autoři
ZULUAGA-GOMEZ, J.; NIGMATULINA, I.; PRASAD, A.; MOTLÍČEK, P.; KHALIL, D.; MADIKERI, S.; TART, A.; SZŐKE, I.; LENDERS, V.; RIGAULT, M.; CHOUKRI, K.
Vydáno
20. 10. 2023
ISSN
2226-4310
Periodikum
Aerospace
Ročník
2023
Číslo
10
Stát
Švýcarská konfederace
Strany od
1
Strany do
33
Strany počet
URL
https://www.mdpi.com/2226-4310/10/10/898
BibTex
@article{BUT185576, author="ZULUAGA-GOMEZ, J. and NIGMATULINA, I. and PRASAD, A. and MOTLÍČEK, P. and KHALIL, D. and MADIKERI, S. and TART, A. and SZŐKE, I. and LENDERS, V. and RIGAULT, M. and CHOUKRI, K.", title="Lessons Learned in Transcribing 5000 h of Air Traffic Control Communications for Robust Automatic Speech Understanding", journal="Aerospace", year="2023", volume="2023", number="10", pages="1--33", doi="10.3390/aerospace10100898", issn="2226-4310", url="https://www.mdpi.com/2226-4310/10/10/898" }
Dokumenty
zuluaga-gomez_aerospace2023-10-00898-v2.pdf