Detail publikace

Chaotic steady states of the Reinartz oscillator: mathematical evidence and experimental confirmation

PETRŽELA, J.

Originální název

Chaotic steady states of the Reinartz oscillator: mathematical evidence and experimental confirmation

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

This paper contributes to the problem of chaos and hyperchaos localization in the fundamental structure of analog building blocks dedicated to single-tone harmonic signal generation. This time, the known Reinartz sinusoidal oscillator is addressed, considering its conventional topology, both via numerical analysis and experiments using a flow-equivalent lumped electronic circuit. It is shown that physically reasonable values of circuit parameters can result in robust dynamical behavior characterized by a pair of positive Lyapunov exponents. Mandatory numerical results prove that discovered strange attractors exhibit all necessary fingerprints of structurally stable chaos. The new “chaotic” parameters are closely related to the standard operation of the investigated analog functional block. A few interestingly shaped, strange attractors have been captured as oscilloscope screenshots.

Klíčová slova

Reinartz oscillator; generalized transistor; two-port admittance parameters; numerical analysis; hyperchaos; chaos; strange attractor

Autoři

PETRŽELA, J.

Vydáno

1. 12. 2023

Nakladatel

MDPI

Místo

Basel

ISSN

2075-1680

Periodikum

Axioms

Ročník

12

Číslo

12

Stát

Švýcarská konfederace

Strany od

1

Strany do

16

Strany počet

16

URL

Plný text v Digitální knihovně

BibTex

@article{BUT185629,
  author="Jiří {Petržela}",
  title="Chaotic steady states of the Reinartz oscillator: mathematical evidence and experimental confirmation",
  journal="Axioms",
  year="2023",
  volume="12",
  number="12",
  pages="1--16",
  doi="10.3390/axioms12121101",
  issn="2075-1680",
  url="https://www.mdpi.com/2075-1680/12/12/1101"
}