Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PETRŽELA, J.
Originální název
Chaotic steady states of the Reinartz oscillator: mathematical evidence and experimental confirmation
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
This paper contributes to the problem of chaos and hyperchaos localization in the fundamental structure of analog building blocks dedicated to single-tone harmonic signal generation. This time, the known Reinartz sinusoidal oscillator is addressed, considering its conventional topology, both via numerical analysis and experiments using a flow-equivalent lumped electronic circuit. It is shown that physically reasonable values of circuit parameters can result in robust dynamical behavior characterized by a pair of positive Lyapunov exponents. Mandatory numerical results prove that discovered strange attractors exhibit all necessary fingerprints of structurally stable chaos. The new “chaotic” parameters are closely related to the standard operation of the investigated analog functional block. A few interestingly shaped, strange attractors have been captured as oscilloscope screenshots.
Klíčová slova
Reinartz oscillator; generalized transistor; two-port admittance parameters; numerical analysis; hyperchaos; chaos; strange attractor
Autoři
Vydáno
1. 12. 2023
Nakladatel
MDPI
Místo
Basel
ISSN
2075-1680
Periodikum
Axioms
Ročník
12
Číslo
Stát
Švýcarská konfederace
Strany od
1
Strany do
16
Strany počet
URL
https://www.mdpi.com/2075-1680/12/12/1101
Plný text v Digitální knihovně
http://hdl.handle.net/11012/245176
BibTex
@article{BUT185629, author="Jiří {Petržela}", title="Chaotic steady states of the Reinartz oscillator: mathematical evidence and experimental confirmation", journal="Axioms", year="2023", volume="12", number="12", pages="1--16", doi="10.3390/axioms12121101", issn="2075-1680", url="https://www.mdpi.com/2075-1680/12/12/1101" }