Detail publikace
Ground states of weighted 4D biharmonic equations with exponential growth
BARAKET, S. DRIDI, B. JAIDANE, R. RADULESCU, V.
Originální název
Ground states of weighted 4D biharmonic equations with exponential growth
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper, we are concerned with the existence of a ground state solution for a logarithmic weighted biharmonic equation under Dirichlet boundary conditions in the unit ball B$$ B $$ of Double-struck capital R4$$ {\mathrm{\mathbb{R}}} circumflex 4 $$. The reaction term of the equation is assumed to have exponential growth, in view of Adams' type inequalities. It is proved that there is a ground state solution using min-max techniques and the Nehari method. The associated energy functional loses compactness at a certain level. An appropriate asymptotic condition allows us to bypass the non-compactness levels of the functional.
Klíčová slova
Adams inequalitycompactness level;mountain pass method;Nehari manifold;nonlinearity of exponential growth
Autoři
BARAKET, S.; DRIDI, B.; JAIDANE, R.; RADULESCU, V.
Vydáno
2. 4. 2024
ISSN
1099-1476
Periodikum
Mathematical Methods in the Applied Sciences
Ročník
47
Číslo
6
Stát
Spojené království Velké Británie a Severního Irska
Strany od
5007
Strany do
5030
Strany počet
24
URL
BibTex
@article{BUT187390,
author="Sami {Baraket} and Brahim {Dridi} and Rachet {Jaidane} and Vicentiu {Radulescu}",
title="Ground states of weighted 4D biharmonic equations with exponential growth",
journal="Mathematical Methods in the Applied Sciences",
year="2024",
volume="47",
number="6",
pages="5007--5030",
doi="10.1002/mma.9851",
issn="1099-1476",
url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001135266200001"
}