Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BARAKET, S. DRIDI, B. JAIDANE, R. RADULESCU, V.
Originální název
Ground states of weighted 4D biharmonic equations with exponential growth
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper, we are concerned with the existence of a ground state solution for a logarithmic weighted biharmonic equation under Dirichlet boundary conditions in the unit ball B$$ B $$ of Double-struck capital R4$$ {\mathrm{\mathbb{R}}} circumflex 4 $$. The reaction term of the equation is assumed to have exponential growth, in view of Adams' type inequalities. It is proved that there is a ground state solution using min-max techniques and the Nehari method. The associated energy functional loses compactness at a certain level. An appropriate asymptotic condition allows us to bypass the non-compactness levels of the functional.
Klíčová slova
Adams inequalitycompactness level;mountain pass method;Nehari manifold;nonlinearity of exponential growth
Autoři
BARAKET, S.; DRIDI, B.; JAIDANE, R.; RADULESCU, V.
Vydáno
2. 4. 2024
ISSN
1099-1476
Periodikum
Mathematical Methods in the Applied Sciences
Ročník
47
Číslo
6
Stát
Spojené království Velké Británie a Severního Irska
Strany od
5007
Strany do
5030
Strany počet
24
URL
https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001135266200001
BibTex
@article{BUT187390, author="Sami {Baraket} and Brahim {Dridi} and Rachet {Jaidane} and Vicentiu {Radulescu}", title="Ground states of weighted 4D biharmonic equations with exponential growth", journal="Mathematical Methods in the Applied Sciences", year="2024", volume="47", number="6", pages="5007--5030", doi="10.1002/mma.9851", issn="1099-1476", url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001135266200001" }