Detail publikace

Ground states of weighted 4D biharmonic equations with exponential growth

BARAKET, S. DRIDI, B. JAIDANE, R. RADULESCU, V.

Originální název

Ground states of weighted 4D biharmonic equations with exponential growth

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper, we are concerned with the existence of a ground state solution for a logarithmic weighted biharmonic equation under Dirichlet boundary conditions in the unit ball B$$ B $$ of Double-struck capital R4$$ {\mathrm{\mathbb{R}}} circumflex 4 $$. The reaction term of the equation is assumed to have exponential growth, in view of Adams' type inequalities. It is proved that there is a ground state solution using min-max techniques and the Nehari method. The associated energy functional loses compactness at a certain level. An appropriate asymptotic condition allows us to bypass the non-compactness levels of the functional.

Klíčová slova

Adams inequalitycompactness level;mountain pass method;Nehari manifold;nonlinearity of exponential growth

Autoři

BARAKET, S.; DRIDI, B.; JAIDANE, R.; RADULESCU, V.

Vydáno

2. 4. 2024

ISSN

1099-1476

Periodikum

Mathematical Methods in the Applied Sciences

Ročník

47

Číslo

6

Stát

Spojené království Velké Británie a Severního Irska

Strany od

5007

Strany do

5030

Strany počet

24

URL

BibTex

@article{BUT187390,
  author="Sami {Baraket} and Brahim {Dridi} and Rachet {Jaidane} and Vicentiu {Radulescu}",
  title="Ground states of weighted 4D biharmonic equations with exponential growth",
  journal="Mathematical Methods in the Applied Sciences",
  year="2024",
  volume="47",
  number="6",
  pages="5007--5030",
  doi="10.1002/mma.9851",
  issn="1099-1476",
  url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001135266200001"
}