Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VANDERREYDT, G. PRASAD, A. KHALIL, D. MADIKERI, S. DEMUYNCK, K. MOTLÍČEK, P.
Originální název
Parameter-Efficient Tuning With Adaptive Bottlenecks For Automatic Speech Recognition
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
Transfer learning from large multilingual pretrained models, like XLSR, has become the new paradigm for Automatic Speech Recognition (ASR). Considering their ever-increasing size, fine-tuning all the weights has become impractical when the computing budget is limited. Adapters are lightweight trainable modules inserted between layers while the pretrained part is kept frozen. They form a parameter-efficient fine-tuning method, but they still require a large bottleneck size to match standard fine-tuning performance. In this paper, we propose ABSADAPTER, a method to further reduce the parameter budget for equal task performance. Specifically, ABSADAPTER uses an Adaptive Bottleneck Scheduler to redistribute the adapter's weights to the layers that need adaptation the most. By training only 8% of the XLSR model, ABSADAPTER achieves close to standard fine-tuning performance on a domain-shifted Air-Traffic Communication (ATC) ASR task.
Klíčová slova
ASR, XLSR, Adapters, ATC
Autoři
VANDERREYDT, G.; PRASAD, A.; KHALIL, D.; MADIKERI, S.; DEMUYNCK, K.; MOTLÍČEK, P.
Vydáno
16. 12. 2023
Nakladatel
IEEE Signal Processing Society
Místo
Taipei
ISBN
979-8-3503-0689-7
Kniha
Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
Strany od
1
Strany do
7
Strany počet
URL
https://ieeexplore.ieee.org/document/10389769
BibTex
@inproceedings{BUT187932, author="VANDERREYDT, G. and PRASAD, A. and KHALIL, D. and MADIKERI, S. and DEMUYNCK, K. and MOTLÍČEK, P.", title="Parameter-Efficient Tuning With Adaptive Bottlenecks For Automatic Speech Recognition", booktitle="Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)", year="2023", pages="1--7", publisher="IEEE Signal Processing Society", address="Taipei", doi="10.1109/ASRU57964.2023.10389769", isbn="979-8-3503-0689-7", url="https://ieeexplore.ieee.org/document/10389769" }