Detail publikace
Deepfake Speech Detection: A Spectrogram Analysis
FIRC, A. MALINKA, K. HANÁČEK, P.
Originální název
Deepfake Speech Detection: A Spectrogram Analysis
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The current voice biometric systems have no natural mechanics to defend against deepfake spoofing attacks. Thus, supporting these systems with a deepfake detection solution is necessary. One of the latest approaches to deepfake speech detection is representing speech as a spectrogram and using it as an input for a deep neural network. This work thus analyzes the feasibility of different spectrograms for deepfake speech detection. We compare types of them regarding their performance, hardware requirements, and speed. We show the majority of the spectrograms are feasible for deepfake detection. However, there is no general, correct answer to selecting the best spectrogram. As we demonstrate, different spectrograms are suitable for different needs.
Klíčová slova
Deepfake, Speech, Image-based, Deepfake Detection, Spectrogram
Autoři
FIRC, A.; MALINKA, K.; HANÁČEK, P.
Vydáno
8. 4. 2024
Nakladatel
Association for Computing Machinery
Místo
Avila
ISBN
979-8-4007-0243-3
Kniha
Proceedings of the ACM Symposium on Applied Computing
Strany od
1312
Strany do
1320
Strany počet
9
URL
BibTex
@inproceedings{BUT188028,
author="Anton {Firc} and Kamil {Malinka} and Petr {Hanáček}",
title="Deepfake Speech Detection: A Spectrogram Analysis",
booktitle="Proceedings of the ACM Symposium on Applied Computing",
year="2024",
pages="1312--1320",
publisher="Association for Computing Machinery",
address="Avila",
doi="10.1145/3605098.3635911",
isbn="979-8-4007-0243-3",
url="https://dl.acm.org/doi/10.1145/3605098.3635911"
}