Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J. RŮŽIČKOVÁ, M.
Originální název
Vanishing and blow-up solutions to a class of nonlinear complex differential equations near the singular point
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
A singular nonlinear differential equation z(sigma) dw/dz = aw + zwf(z , w), where sigma > 1, is considered in a neighbourhood of the point z = 0 z=0 located either in the complex plane C if sigma is a natural number, in a Riemann surface of a rational function if sigma is a rational number, or in the Riemann surface of logarithmic function if sigma is an irrational number. It is assumed that w = w ( z ) w=w\left(z) , a is an element of C { 0 } a, and that the function f f is analytic in a neighbourhood of the origin in C x C . Considering sigma to be an integer, a rational, or an irrational number, for each of the above-mentioned cases, the existence is proved of analytic solutions w = w (z ) w=w(z) in a domain that is part of a neighbourhood of the point z = 0 z=0 in C or in the Riemann surface of either a rational or a logarithmic function. Within this domain, the property lim z -> 0 w (z) = 0 is proved and an asymptotic behaviour of w (z) s established. Several examples and figures illustrate the results derived. The blow-up phenomenon is discussed as well.
Klíčová slova
analytic solution; asymptotic behaviour; blow-up phenomenon; complex plane; differential equation; singular point
Autoři
DIBLÍK, J.; RŮŽIČKOVÁ, M.
Vydáno
5. 2. 2024
Nakladatel
De Gruyter
Místo
WARSAW
ISSN
2191-9496
Periodikum
Advances in Nonlinear Analysis
Ročník
13
Číslo
1
Stát
Spolková republika Německo
Strany od
Strany do
44
Strany počet
URL
https://www.degruyter.com/document/doi/10.1515/anona-2023-0120/pdf
Plný text v Digitální knihovně
http://hdl.handle.net/11012/245497
BibTex
@article{BUT188249, author="Josef {Diblík} and Miroslava {Růžičková}", title="Vanishing and blow-up solutions to a class of nonlinear complex differential equations near the singular point", journal="Advances in Nonlinear Analysis", year="2024", volume="13", number="1", pages="1--44", doi="10.1515/anona-2023-0120", issn="2191-9496", url="https://www.degruyter.com/document/doi/10.1515/anona-2023-0120/pdf" }