Detail publikace

Normalized solutions for (p,q)-Laplacian equations with mass supercritical growth

CAI, L. RADULESCU, V.

Originální název

Normalized solutions for (p,q)-Laplacian equations with mass supercritical growth

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper, we study the following (p,q)-Laplacian equation with Lp-constraint: {−Δpu−Δqu+λ|u|p−2u=f(u),inRN,∫R|u|pdx=cp,u∈W1,p(RN)∩W1,q(RN), where 10 is a constant. The nonlinearity f is assumed to be continuous and satisfying weak mass supercritical conditions. The purpose of this paper is twofold: to establish the existence of ground states, and to reveal the basic behavior of the ground state energy Ec as c>0 varies. Moreover, we introduce a new approach based on the direct minimization of the energy functional on the linear combination of Nehari and Pohozaev constraints intersected with the closed ball of radius cp in Lp(RN). The analysis developed in this paper allows to provide the general growth assumptions imposed to the reaction f.

Klíčová slova

(p,q)-Laplacian; General nonlinearity; Ground state; Mass supercritical case; Normalized solutions

Autoři

CAI, L.; RADULESCU, V.

Vydáno

15. 5. 2024

ISSN

1090-2732

Periodikum

Journal of Differential Equations

Ročník

391

Číslo

2024

Stát

Spojené státy americké

Strany od

57

Strany do

104

Strany počet

48

URL

BibTex

@article{BUT188254,
  author="Li {Cai} and Vicentiu {Radulescu}",
  title="Normalized solutions for (p,q)-Laplacian equations with mass supercritical growth",
  journal="Journal of Differential Equations",
  year="2024",
  volume="391",
  number="2024",
  pages="57--104",
  doi="10.1016/j.jde.2024.01.041",
  issn="1090-2732",
  url="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0022039624000536?via%3Dihub"
}