Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
CAI, L. RADULESCU, V.
Originální název
Normalized solutions for (p,q)-Laplacian equations with mass supercritical growth
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper, we study the following (p,q)-Laplacian equation with Lp-constraint: {−Δpu−Δqu+λ|u|p−2u=f(u),inRN,∫R|u|pdx=cp,u∈W1,p(RN)∩W1,q(RN), where 1
0 is a constant. The nonlinearity f is assumed to be continuous and satisfying weak mass supercritical conditions. The purpose of this paper is twofold: to establish the existence of ground states, and to reveal the basic behavior of the ground state energy Ec as c>0 varies. Moreover, we introduce a new approach based on the direct minimization of the energy functional on the linear combination of Nehari and Pohozaev constraints intersected with the closed ball of radius cp in Lp(RN). The analysis developed in this paper allows to provide the general growth assumptions imposed to the reaction f.
Klíčová slova
(p,q)-Laplacian; General nonlinearity; Ground state; Mass supercritical case; Normalized solutions
Autoři
CAI, L.; RADULESCU, V.
Vydáno
15. 5. 2024
ISSN
1090-2732
Periodikum
Journal of Differential Equations
Ročník
391
Číslo
2024
Stát
Spojené státy americké
Strany od
57
Strany do
104
Strany počet
48
URL
https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0022039624000536?via%3Dihub
BibTex
@article{BUT188254, author="Li {Cai} and Vicentiu {Radulescu}", title="Normalized solutions for (p,q)-Laplacian equations with mass supercritical growth", journal="Journal of Differential Equations", year="2024", volume="391", number="2024", pages="57--104", doi="10.1016/j.jde.2024.01.041", issn="1090-2732", url="https://www-sciencedirect-com.ezproxy.lib.vutbr.cz/science/article/pii/S0022039624000536?via%3Dihub" }