Detail publikace

Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth

LI, Q. RADULESCU, V. ZHANG, W.

Originální název

Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In the present paper, we investigate the existence of ground state solutions to the Sobolev critical nonlinear Schrödinger equation − Δ u + λ u = g u + | u | 2 ∗ − 2 u in R N , ∫ R N | u | 2 d x = m 2 , where N ⩾ 3 , m > 0, 2 ∗ := 2 N N − 2 , λ is an unknown parameter that will appear as a Lagrange multiplier, g is a mass critical or supercritical but Sobolev subcritical nonlinearity. With the aid of the minimization of the energy functional over a linear combination of the Nehari and Pohozaev constraints intersected with the product of the closed balls in L 2 ( R N ) of radii m and the profile decomposition, we obtain a couple of the normalized ground state solution to ( P m ) that is independent of the sign of the Lagrange multiplier. This result complements and extends the paper by Bieganowski and Mederski (2021 J. Funct. Anal. 280 108989) concerning the above problem from the Sobolev subcritical setting to the Sobolev critical framework. We also answer an open problem that was proposed by Jeanjean and Lu (2020 Calc. Var. PDE 59 174). Furthermore, the asymptotic behavior of the ground state energy map is also studied.

Klíčová slova

normalized ground states; Pohozaev manifold; profile decomposition; Sobolev critical exponent

Autoři

LI, Q.; RADULESCU, V.; ZHANG, W.

Vydáno

18. 1. 2024

ISSN

0951-7715

Periodikum

NONLINEARITY

Ročník

37

Číslo

025018

Stát

Spojené království Velké Británie a Severního Irska

Strany od

1

Strany do

29

Strany počet

29

URL

BibTex

@article{BUT188256,
  author="Quanqing {Li} and Vicentiu {Radulescu} and Wen {Zhang}",
  title="Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth",
  journal="NONLINEARITY",
  year="2024",
  volume="37",
  number="025018",
  pages="29",
  doi="10.1088/1361-6544/ad1b8b",
  issn="0951-7715",
  url="https://iopscience-iop-org.ezproxy.lib.vutbr.cz/article/10.1088/1361-6544/ad1b8b/pdf"
}