Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LI, Q. RADULESCU, V. ZHANG, W.
Originální název
Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In the present paper, we investigate the existence of ground state solutions to the Sobolev critical nonlinear Schrödinger equation − Δ u + λ u = g u + | u | 2 ∗ − 2 u in R N , ∫ R N | u | 2 d x = m 2 , where N ⩾ 3 , m > 0, 2 ∗ := 2 N N − 2 , λ is an unknown parameter that will appear as a Lagrange multiplier, g is a mass critical or supercritical but Sobolev subcritical nonlinearity. With the aid of the minimization of the energy functional over a linear combination of the Nehari and Pohozaev constraints intersected with the product of the closed balls in L 2 ( R N ) of radii m and the profile decomposition, we obtain a couple of the normalized ground state solution to ( P m ) that is independent of the sign of the Lagrange multiplier. This result complements and extends the paper by Bieganowski and Mederski (2021 J. Funct. Anal. 280 108989) concerning the above problem from the Sobolev subcritical setting to the Sobolev critical framework. We also answer an open problem that was proposed by Jeanjean and Lu (2020 Calc. Var. PDE 59 174). Furthermore, the asymptotic behavior of the ground state energy map is also studied.
Klíčová slova
normalized ground states; Pohozaev manifold; profile decomposition; Sobolev critical exponent
Autoři
LI, Q.; RADULESCU, V.; ZHANG, W.
Vydáno
18. 1. 2024
ISSN
0951-7715
Periodikum
NONLINEARITY
Ročník
37
Číslo
025018
Stát
Spojené království Velké Británie a Severního Irska
Strany od
1
Strany do
29
Strany počet
URL
https://iopscience-iop-org.ezproxy.lib.vutbr.cz/article/10.1088/1361-6544/ad1b8b/pdf
BibTex
@article{BUT188256, author="Quanqing {Li} and Vicentiu {Radulescu} and Wen {Zhang}", title="Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth", journal="NONLINEARITY", year="2024", volume="37", number="025018", pages="29", doi="10.1088/1361-6544/ad1b8b", issn="0951-7715", url="https://iopscience-iop-org.ezproxy.lib.vutbr.cz/article/10.1088/1361-6544/ad1b8b/pdf" }