Detail publikace

Estimating Extreme 3D Image Rotations using Cascaded Attention

DEKEL, S. KELLER, Y. ČADÍK, M.

Originální název

Estimating Extreme 3D Image Rotations using Cascaded Attention

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

Estimating large, extreme inter-image rotations is critical for numerous computer vision domains involving images related by limited or non-overlapping fields of view. In this work, we propose an attention-based approach with a pipeline of novel algorithmic components. First, as rotation estimation pertains to image pairs, we introduce an inter-image distillation scheme using Decoders to improve embeddings. Second, whereas contemporary methods compute a 4D correlation volume (4DCV) encoding inter-image relationships, we propose an Encoder-based cross-attention approach between activation maps to compute an enhanced equivalent of the 4DCV. Finally, we present a cascaded Decoder-based technique for alternately refining the cross-attention and the rotation query. Our approach outperforms current state-of-the-art methods on extreme rotation estimation. We make our code publicly available.

Klíčová slova

camera orientation estimation, extreme rotation, 3D rotation, cascaded attention

Autoři

DEKEL, S.; KELLER, Y.; ČADÍK, M.

Vydáno

13. 3. 2024

Nakladatel

IEEE Computer Society

Místo

Seattle

ISBN

979-8-3503-5301-3

Kniha

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Strany od

2588

Strany do

2598

Strany počet

11

URL

BibTex

@inproceedings{BUT188275,
  author="Shay {Dekel} and Yosi {Keller} and Martin {Čadík}",
  title="Estimating Extreme 3D Image Rotations using Cascaded Attention",
  booktitle="Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)",
  year="2024",
  pages="2588--2598",
  publisher="IEEE Computer Society",
  address="Seattle",
  doi="10.1109/CVPR52733.2024.00250",
  isbn="979-8-3503-5301-3",
  url="https://cadik.posvete.cz/"
}