Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ALI, M. MARŠÁLEK, R.
Originální název
Dynamic People Counting from Delay-Doppler Images in Challenging Scenarios: Enhancing Model Performance
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This study presents a novel radar-based people counting (PCnt) methodology empowered by deep learning (DL) frameworks. The challenges we face include overfitting due to the model’s tendency to extract highly domain-specific features. These challenges arise from limited data and clutter in indoor settings. To tackle this, our radar system operates in both lab and industrial environments. We propose a 2D-CNN approach and explore ways to handle these challenges, focusing on im proving accuracy through preprocessing techniques. Additionally, we introduced data augmentation strategies to enhance model robustness and mitigate overfitting. Our experiments show our approach accurately counts people moving along the radar line in various environments. However, detecting stationary individuals and distinguishing between moving human and non-human entities remain challenging areas for future work.
Klíčová slova
People counting; heterogeneous clutter environment; preprocessing; data augmentation; deep learning.
Autoři
ALI, M.; MARŠÁLEK, R.
Vydáno
17. 4. 2024
Nakladatel
Institute of Electrical and Electronics Engineers Inc.
ISBN
979-8-3503-6215-2
Kniha
RADIOELEKTRONIKA 2024: 2024 34th International Conference Radioelektronika
Strany počet
6
URL
https://ieeexplore.ieee.org/document/10524098
BibTex
@inproceedings{BUT188392, author="Malek Abdulmalek Ahmed {Ali} and Roman {Maršálek}", title="Dynamic People Counting from Delay-Doppler Images in Challenging Scenarios: Enhancing Model Performance", booktitle="RADIOELEKTRONIKA 2024: 2024 34th International Conference Radioelektronika", year="2024", pages="6", publisher="Institute of Electrical and Electronics Engineers Inc.", doi="10.1109/RADIOELEKTRONIKA61599.2024.10524098", isbn="979-8-3503-6215-2", url="https://ieeexplore.ieee.org/document/10524098" }