Detail publikace

Multiplicity of concentrating solutions for (p, q)-Schrödinger equations with lack of compactness

AMBROSIO, V. RADULESCU, V.

Originální název

Multiplicity of concentrating solutions for (p, q)-Schrödinger equations with lack of compactness

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

We study the multiplicity of concentrating solutions for the following class of (p, q)-Laplacian problems (Formula presented.) where ε > 0 is a small parameter, γ∈{0,1},1 infΛV for some bounded open set Λ ⊂ ℝN, and f: ℝ → ℝ is a continuous nonlinearity with subcritical growth. The main results are obtained by combining minimax theorems, penalization technique and Ljusternik–Schnirelmann category theory. We also provide a multiplicity result for a supercritical version of the above problem by combining a truncation argument with a Moser-type iteration. As far as we know, all these results are new.

Klíčová slova

Schrödinger equations; Ljusternik–Schnirelmann category theory;Moser-type iteration

Autoři

AMBROSIO, V.; RADULESCU, V.

Vydáno

7. 10. 2024

Nakladatel

HEBREW UNIV MAGNES PRESSPO BOX

Místo

JERUSALEM, ISRAEL

ISSN

0021-2172

Periodikum

ISRAEL JOURNAL OF MATHEMATICS

Ročník

262

Číslo

1

Stát

Stát Izrael

Strany od

399

Strany do

447

Strany počet

49

URL

BibTex

@article{BUT188558,
  author="Vincenzo {Ambrosio} and Vicentiu {Radulescu}",
  title="Multiplicity of concentrating solutions for (p, q)-Schrödinger equations with lack of compactness",
  journal="ISRAEL JOURNAL OF MATHEMATICS",
  year="2024",
  volume="262",
  number="1",
  pages="399--447",
  doi="10.1007/s11856-024-2619-8",
  issn="0021-2172",
  url="https://link.springer.com/content/pdf/10.1007/s11856-024-2619-8.pdf"
}