Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LE, T. D. MAŠEK, P.
Originální název
Machine Learning-based Fingerprinting Localization in 5G Cellular Networks
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This study explores the viability of employing machine learning (ML)-based fingerprinting localization in 5G heterogeneous cellular networks. We conducted an extensive measurement campaign to collect data and utilized them to train three ML models: Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM). The findings reveal that RF delivers the highest accuracy among the three ML algorithms. Furthermore, the results indicate that 5G New Radio (NR) can benefit the most from this localization method due to the dense deployment of base stations, achieving median localization errors of 17.5 m and 106 m during the validation and testing phases, respectively.
Klíčová slova
Fingerprinting Localization; Machine Learning; 5G New Radio; NB-IoT; LTE-M; Random Forest; XGBoost; Support Vector Machine
Autoři
LE, T. D.; MAŠEK, P.
Vydáno
23. 4. 2024
Nakladatel
Brno University of Technology, Faculty of Electronic Engineering and Communication
Místo
Brno
ISBN
978-80-214-6230-4
Kniha
Proceedings II of the 30th Conference STUDENT EEICT 2024: Selected papers
Edice
1
Strany od
222
Strany do
226
Strany počet
5
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf
BibTex
@inproceedings{BUT188618, author="Dinh Thao {Le} and Pavel {Mašek}", title="Machine Learning-based Fingerprinting Localization in 5G Cellular Networks", booktitle="Proceedings II of the 30th Conference STUDENT EEICT 2024: Selected papers", year="2024", series="1", pages="222--226", publisher="Brno University of Technology, Faculty of Electronic Engineering and Communication", address="Brno", doi="10.13164/eeict.2024.222", isbn="978-80-214-6230-4", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf" }