Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
UHLÍK, O. OKŘINOVÁ, P. TOKAREVSKIKH, A. APELTAUER, T. APELTAUER, J.
Originální název
Real-time RSET prediction across three types of geometries and simulation training dataset: A comparative study of machine learning models
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Agent-based evacuation models provide useful data of the evacuation process, but they are not primarily designed for use during an emergency. The paper aims to test predicting RSET using a surrogate ML model trained on a simulation dataset with 60 samples. A total of 9 machine learning algorithms were tested on 3 simple geometries: bottleneck, stairway and walkway. A set of 7 spatial features was used to train the surrogate models. The results showed a relatively good ability of Artificial Neural Network to learn in scenarios involving bottlenecks and stairways, with an R2: 0.99 on the testing dataset. In the walkway scenario, all models experienced a significant drop in performance, with Gradient Boost performing the best (R2: 0.92). The paper demonstrated ability to generalize effectively in bottleneck-type tasks with training on a relatively small dataset containing spatial parameters obtainable in real-time from camera systems.
Klíčová slova
Evacuation modeling, Machine learning, Required safe egress time, Agent-based models
Autoři
UHLÍK, O.; OKŘINOVÁ, P.; TOKAREVSKIKH, A.; APELTAUER, T.; APELTAUER, J.
Vydáno
24. 5. 2024
Nakladatel
Elsevier
Místo
Netherlands
ISSN
2666-1659
Periodikum
Developments in the Built Environment
Ročník
18
Číslo
100461
Stát
Spojené království Velké Británie a Severního Irska
Strany počet
13
URL
https://www.sciencedirect.com/science/article/pii/S266616592400142X?via%3Dihub
Plný text v Digitální knihovně
http://hdl.handle.net/11012/249353
BibTex
@article{BUT188671, author="Ondřej {Uhlík} and Petra {Okřinová} and Artem {Tokarevskikh} and Tomáš {Apeltauer} and Jiří {Apeltauer}", title="Real-time RSET prediction across three types of geometries and simulation training dataset: A comparative study of machine learning models", journal="Developments in the Built Environment", year="2024", volume="18", number="100461", pages="13", doi="10.1016/j.dibe.2024.100461", issn="2666-1659", url="https://www.sciencedirect.com/science/article/pii/S266616592400142X?via%3Dihub" }