Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PETRŽELA, J. POLÁK, L.
Originální název
Sinusoidal oscillator parametrically forced to robust hyperchaotic states: the lumpkin case
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The objective of this paper is to showcase the capability of the conventional circuit structure known as the Lumpkin oscillator, widely employed in practical applications, to operate in robust chaotic or hyperchaotic steady states. Through numerical analysis, we demonstrate that the generated signals exhibit a significant level of unpredictability and randomness, as evidenced by positive Lyapunov exponents, approximate entropy, recurrence plots, and other indicators of complex dynamics. We establish the structural stability of strange attractors through design and practical construction of a flow-equivalent fourth-order chaotic oscillator, followed by experimental measurements. The oscilloscope screenshots captured align well with the plane projections of the approximate solutions derived from the underlying mathematical models.
Klíčová slova
Chaotic circuit; Lyapunov exponents; Recurrence plot; Lumpkin oscillator; Strange attractor
Autoři
PETRŽELA, J.; POLÁK, L.
Vydáno
24. 6. 2024
Nakladatel
SPRINGER
Místo
DORDRECHT
ISSN
1573-269X
Periodikum
NONLINEAR DYNAMICS
Ročník
112
Číslo
18
Stát
Spojené státy americké
Strany od
16423
Strany do
16443
Strany počet
21
URL
https://link.springer.com/article/10.1007/s11071-024-09896-y
Plný text v Digitální knihovně
http://hdl.handle.net/11012/249482
BibTex
@article{BUT189008, author="Jiří {Petržela} and Ladislav {Polák}", title="Sinusoidal oscillator parametrically forced to robust hyperchaotic states: the lumpkin case", journal="NONLINEAR DYNAMICS", year="2024", volume="112", number="18", pages="21", doi="10.1007/s11071-024-09896-y", issn="1573-269X", url="https://link.springer.com/article/10.1007/s11071-024-09896-y" }