Detail publikace

Sinusoidal oscillator parametrically forced to robust hyperchaotic states: the lumpkin case

PETRŽELA, J. POLÁK, L.

Originální název

Sinusoidal oscillator parametrically forced to robust hyperchaotic states: the lumpkin case

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The objective of this paper is to showcase the capability of the conventional circuit structure known as the Lumpkin oscillator, widely employed in practical applications, to operate in robust chaotic or hyperchaotic steady states. Through numerical analysis, we demonstrate that the generated signals exhibit a significant level of unpredictability and randomness, as evidenced by positive Lyapunov exponents, approximate entropy, recurrence plots, and other indicators of complex dynamics. We establish the structural stability of strange attractors through design and practical construction of a flow-equivalent fourth-order chaotic oscillator, followed by experimental measurements. The oscilloscope screenshots captured align well with the plane projections of the approximate solutions derived from the underlying mathematical models.

Klíčová slova

Chaotic circuit; Lyapunov exponents; Recurrence plot; Lumpkin oscillator; Strange attractor

Autoři

PETRŽELA, J.; POLÁK, L.

Vydáno

24. 6. 2024

Nakladatel

SPRINGER

Místo

DORDRECHT

ISSN

1573-269X

Periodikum

NONLINEAR DYNAMICS

Ročník

112

Číslo

18

Stát

Spojené státy americké

Strany od

16423

Strany do

16443

Strany počet

21

URL

Plný text v Digitální knihovně

BibTex

@article{BUT189008,
  author="Jiří {Petržela} and Ladislav {Polák}",
  title="Sinusoidal oscillator parametrically forced to robust hyperchaotic states: the lumpkin case",
  journal="NONLINEAR DYNAMICS",
  year="2024",
  volume="112",
  number="18",
  pages="21",
  doi="10.1007/s11071-024-09896-y",
  issn="1573-269X",
  url="https://link.springer.com/article/10.1007/s11071-024-09896-y"
}