Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
GAVENČIAK, M.
Originální název
LSTM-Based Autoencoders in Online Handwriting Data Augmentation and Preprocessing
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
On-line handwriting analysis is a research field that is among others used in assessment of handwriting difficulties (HD), which can be manifestations of degenerative brain diseases such as Parkinson's disease in the elderly, or developmental dysgraphia in children. Using advanced modelling approaches or artificial intelligence is often difficult because of the limited data availability in both demographic cohorts. In this article, a data processing approach, using LSTM-based autoencoders, is described as a way of augmenting the database with semi-synthetic data or preprocessing the data to improve the performance of feature-based classification. The proposed method has led to a 3 percentage point increase in classification accuracy when compared to baseline. While the improvement is marginal, it highlights another possible area of research to improve the efficacy of automated HD assessment.
Klíčová slova
Handwriting difficulties, XGBoost, LSTM, autoencoder
Autoři
Vydáno
23. 4. 2024
Nakladatel
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo
Brno
Strany od
211
Strany do
215
Strany počet
5
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf
BibTex
@inproceedings{BUT189193, author="Michal {Gavenčiak}", title="LSTM-Based Autoencoders in Online Handwriting Data Augmentation and Preprocessing", year="2024", pages="211--215", publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication", address="Brno", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf" }