Detail publikace
Energy Complexity of Convolutional Neural Networks
ŠÍMA, J. VIDNEROVÁ, P. MRÁZEK, V.
Originální název
Energy Complexity of Convolutional Neural Networks
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The energy efficiency of hardware implementations of convolutional neural networks (CNNs) is critical to their widespread deployment in low-power mobile devices. Recently, a number of methods have been proposed for providing energy-optimal mappings of CNNs onto diverse hardware accelerators. Their estimated energy consumption is related to specific implementation details and hardware parameters, which does not allow for machine-independent exploration of CNN energy measures. In this letter, we introduce a simplified theoretical energy complexity model for CNNs, based on only a two-level memory hierarchy that captures asymptotically all important sources of energy consumption for different CNN hardware implementations. In this model, we derive a simple energy lower bound and calculate the energy complexity of evaluating a CNN layer for two common data flows, providing corresponding upper bounds. According to statistical tests, the theoretical energy upper and lower bounds we present fit asymptotically very well with the real energy consumption of CNN implementations on the Simba and Eyeriss hardware platforms, estimated by the Timeloop/Accelergy program, which validates the proposed energy complexity model for CNNs.
Klíčová slova
energy complexity, upper bound, lower bound, convolutional neural networks
Autoři
ŠÍMA, J.; VIDNEROVÁ, P.; MRÁZEK, V.
Vydáno
19. 7. 2024
Nakladatel
MIT PRESS
Místo
CAMBRIDGE
ISSN
0899-7667
Periodikum
NEURAL COMPUTATION
Ročník
36
Číslo
8
Stát
Spojené státy americké
Strany od
1601
Strany do
1625
Strany počet
25
URL
BibTex
@article{BUT189311,
author="ŠÍMA, J. and VIDNEROVÁ, P. and MRÁZEK, V.",
title="Energy Complexity of Convolutional Neural Networks",
journal="NEURAL COMPUTATION",
year="2024",
volume="36",
number="8",
pages="1601--1625",
doi="10.1162/neco\{_}a\{_}01676",
issn="0899-7667",
url="https://direct.mit.edu/neco/article-abstract/36/8/1601/121120/Energy-Complexity-of-Convolutional-Neural-Networks?redirectedFrom=fulltext"
}