Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BAŠTINEC, J. DIBLÍK, J.
Originální název
Bounded solutions of discrete equations with several fractional differences
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In the paper is considered a fractional discrete equation Sigma(s)(pi=1) Delta(beta pi) z(k + 1) = G(k)(k, z(k),..., z(k(0))), k = k(0), k(0) + 1,... where Delta(beta pi), beta(pi) > 0, pi = 1,..., s, are the beta(pi)-order fractional differences, G(k): {k} x Rk-k0+1 -> R, k(0) is an element of Z, k is an element of Z, k >= k(0) and z: {k(0), k(0) + 1,...} -> R. Sufficient conditions are given for the existence of bounded solutions satisfying inequalities b(k) < z(k) < c(k), for all k >= k(0) where b and c are real functions satisfying b(k) < c(k). An application is considered to an equation with several fractional differences Sigma(s)(pi=1) Delta(beta pi) z(k + 1) = G(k)(k, z(k),..., z(k(0))), k = k(0), k(0) + 1,... where xi is an element of R and sigma: {k(0), k(0) + 1,...}-> R. It is proved that there exists a bounded solution satisfying the inequality vertical bar z(k)vertical bar < L, k = k(0), k(0) + 1,..., for a constant L.
Klíčová slova
discrete fractional equation; bounded solution; fractional difference
Autoři
BAŠTINEC, J.; DIBLÍK, J.
Vydáno
7. 6. 2024
Nakladatel
American Institute of Physics
Místo
USA
ISBN
9780735449541
Kniha
AIP Conference Proceedings, Volume 3094, Issue 1, 7 June 2024, International Conference of Numerical Analysis and Applied Mathematics 2022, ICNAAM 2022
ISSN
0094-243X
Periodikum
AIP conference proceedings
Ročník
3094
Číslo
1
Stát
Spojené státy americké
Strany od
500044-1
Strany do
500044-4
Strany počet
4
URL
https://pubs.aip.org/aip/acp/article-abstract/3094/1/500044/3297296/Bounded-solutions-of-discrete-equations-with?redirectedFrom=fulltext