Detail publikace

Bounded solutions of discrete equations with several fractional differences

BAŠTINEC, J. DIBLÍK, J.

Originální název

Bounded solutions of discrete equations with several fractional differences

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

In the paper is considered a fractional discrete equation Sigma(s)(pi=1) Delta(beta pi) z(k + 1) = G(k)(k, z(k),..., z(k(0))), k = k(0), k(0) + 1,... where Delta(beta pi), beta(pi) > 0, pi = 1,..., s, are the beta(pi)-order fractional differences, G(k): {k} x Rk-k0+1 -> R, k(0) is an element of Z, k is an element of Z, k >= k(0) and z: {k(0), k(0) + 1,...} -> R. Sufficient conditions are given for the existence of bounded solutions satisfying inequalities b(k) < z(k) < c(k), for all k >= k(0) where b and c are real functions satisfying b(k) < c(k). An application is considered to an equation with several fractional differences Sigma(s)(pi=1) Delta(beta pi) z(k + 1) = G(k)(k, z(k),..., z(k(0))), k = k(0), k(0) + 1,... where xi is an element of R and sigma: {k(0), k(0) + 1,...}-> R. It is proved that there exists a bounded solution satisfying the inequality vertical bar z(k)vertical bar < L, k = k(0), k(0) + 1,..., for a constant L.

Klíčová slova

discrete fractional equation; bounded solution; fractional difference

Autoři

BAŠTINEC, J.; DIBLÍK, J.

Vydáno

7. 6. 2024

Nakladatel

American Institute of Physics

Místo

USA

ISBN

9780735449541

Kniha

AIP Conference Proceedings, Volume 3094, Issue 1, 7 June 2024, International Conference of Numerical Analysis and Applied Mathematics 2022, ICNAAM 2022

ISSN

0094-243X

Periodikum

AIP conference proceedings

Ročník

3094

Číslo

1

Stát

Spojené státy americké

Strany od

500044-1

Strany do

500044-4

Strany počet

4

URL