Detail publikace

Large time behavior of nonautonomous linear differential equations with Kirchhoff coefficients

DIBLÍK, J. PITUK, M. SZEDERKÉNYI, G.

Originální název

Large time behavior of nonautonomous linear differential equations with Kirchhoff coefficients

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

Nonautonomous linear ordinary differential equations with Kirchhoff coefficients are considered. Under appropriate assumptions on the topology of the directed graphs of the coefficients, it is shown that if the Perron vectors of the coefficients are slowly varying at infinity, then every solution is asymptotic to a constant multiple of the Perron vectors at infinity. Our results improve and generalize some recent convergence theorems.

Klíčová slova

Linear systems; Time-varying systems; Positive systems; Kirchhoff matrix

Autoři

DIBLÍK, J.; PITUK, M.; SZEDERKÉNYI, G.

Vydáno

31. 3. 2024

Nakladatel

Elsevier

Místo

OXFORD

ISSN

0005-1098

Periodikum

AUTOMATICA

Ročník

161

Číslo

111473

Stát

Spojené státy americké

Strany od

1

Strany do

5

Strany počet

5

URL

BibTex

@article{BUT189321,
  author="Josef {Diblík} and Mihaly {Pituk} and Gábor {Szederkényi}",
  title="Large time behavior of nonautonomous linear differential equations with Kirchhoff coefficients",
  journal="AUTOMATICA",
  year="2024",
  volume="161",
  number="111473",
  pages="1--5",
  doi="10.1016/j.automatica.2023.111473",
  issn="0005-1098",
  url="https://www.sciencedirect.com/science/article/pii/S0005109823006428?via%3Dihub"
}