Detail publikace
Large time behavior of nonautonomous linear differential equations with Kirchhoff coefficients
DIBLÍK, J. PITUK, M. SZEDERKÉNYI, G.
Originální název
Large time behavior of nonautonomous linear differential equations with Kirchhoff coefficients
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Nonautonomous linear ordinary differential equations with Kirchhoff coefficients are considered. Under appropriate assumptions on the topology of the directed graphs of the coefficients, it is shown that if the Perron vectors of the coefficients are slowly varying at infinity, then every solution is asymptotic to a constant multiple of the Perron vectors at infinity. Our results improve and generalize some recent convergence theorems.
Klíčová slova
Linear systems; Time-varying systems; Positive systems; Kirchhoff matrix
Autoři
DIBLÍK, J.; PITUK, M.; SZEDERKÉNYI, G.
Vydáno
31. 3. 2024
Nakladatel
Elsevier
Místo
OXFORD
ISSN
0005-1098
Periodikum
AUTOMATICA
Ročník
161
Číslo
3
Stát
Spojené státy americké
Strany od
1
Strany do
5
Strany počet
5
URL
Plný text v Digitální knihovně
BibTex
@article{BUT189321,
author="Josef {Diblík} and Mihaly {Pituk} and Gábor {Szederkényi}",
title="Large time behavior of nonautonomous linear differential equations with Kirchhoff coefficients",
journal="AUTOMATICA",
year="2024",
volume="161",
number="3",
pages="1--5",
doi="10.1016/j.automatica.2023.111473",
issn="0005-1098",
url="https://www.sciencedirect.com/science/article/pii/S0005109823006428?via%3Dihub"
}