Detail publikace
Diffuse or Confuse: A Diffusion Deepfake Speech Dataset
FIRC, A. MALINKA, K. HANÁČEK, P.
Originální název
Diffuse or Confuse: A Diffusion Deepfake Speech Dataset
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Advancements in artificial intelligence and machine learning have significantly improved synthetic speech generation. This paper explores diffusion models, a novel method for creating realistic synthetic speech. We create a diffusion dataset using available tools and pretrained models. Additionally, this study assesses the quality of diffusion-generated deepfakes versus non-diffusion ones and their potential threat to current deepfake detection systems. Findings indicate that the detection of diffusion-based deepfakes is generally comparable to non-diffusion deepfakes, with some variability based on detector architecture. Re-vocoding with diffusion vocoders shows minimal impact, and the overall speech quality is comparable to non-diffusion methods.
Klíčová slova
deepfakes, deepfake speech, dataset, diffusion, detection
Autoři
FIRC, A.; MALINKA, K.; HANÁČEK, P.
Vydáno
11. 12. 2024
Nakladatel
GI - Group for computer science
Místo
Darmstadt
ISBN
978-3-88579-749-4
Kniha
2024 International Conference of the Biometrics Special Interest Group (BIOSIG)
Strany od
1
Strany do
7
Strany počet
7
URL
BibTex
@inproceedings{BUT189345,
author="Anton {Firc} and Kamil {Malinka} and Petr {Hanáček}",
title="Diffuse or Confuse: A Diffusion Deepfake Speech Dataset",
booktitle="2024 International Conference of the Biometrics Special Interest Group (BIOSIG)",
year="2024",
pages="1--7",
publisher="GI - Group for computer science",
address="Darmstadt",
doi="10.1109/BIOSIG61931.2024.10786752",
isbn="978-3-88579-749-4",
url="https://ieeexplore.ieee.org/document/10786752"
}