Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVÁK, L. VALDEBENITO, M. FAES, M.
Originální název
On fractional moment estimation from polynomial chaos expansion
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Fractional statistical moments are utilized for various tasks of uncertainty quantification, including the estimation of probability distributions. However, an estimation of fractional statistical moments of costly mathematical models by statistical sampling is challenging since it is typically not possible to create a large experimental design due to limitations in computing capacity. This paper presents a novel approach for the analytical estimation of fractional moments, directly from polynomial chaos expansions. Specifically, the first four statistical moments obtained from the deterministic coefficients of polynomial chaos expansion are used for an estimation of arbitrary fractional moments via H & ouml;lder's inequality. The proposed approach is utilized for an estimation of statistical moments and probability distributions in four numerical examples of increasing complexity. Obtained results show that the proposed approach achieves a superior performance in estimating the distribution of the response, in comparison to a standard Latin hypercube sampling in the presented examples.
Klíčová slova
Polynomial chaos expansion; Fractional moments; Statistical analysis; H & ouml;lder's inequality
Autoři
NOVÁK, L.; VALDEBENITO, M.; FAES, M.
Vydáno
1. 2. 2025
Nakladatel
ELSEVIER SCI LTD
Místo
London
ISSN
0951-8320
Periodikum
RELIABILITY ENGINEERING & SYSTEM SAFETY
Ročník
254
Číslo
February
Stát
Spojené království Velké Británie a Severního Irska
Strany počet
12
URL
https://www.sciencedirect.com/science/article/pii/S0951832024006653
BibTex
@article{BUT191345, author="Lukáš {Novák} and Marcos {Valdebenito} and Matthias {Faes}", title="On fractional moment estimation from polynomial chaos expansion", journal="RELIABILITY ENGINEERING & SYSTEM SAFETY", year="2025", volume="254", number="February", pages="12", doi="10.1016/j.ress.2024.110594", issn="0951-8320", url="https://www.sciencedirect.com/science/article/pii/S0951832024006653" }