Detail publikace
Methods for Trajectory Outlier Detection in Surveillance Video
PEŠEK, M.
Originální název
Methods for Trajectory Outlier Detection in Surveillance Video
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
Outlier detection in trajectory data extracted from surveillance video is a useful data analysis task, which can reveal anomalous or suspicious behaviour of moving objects. This paper deals with the description, evaluation and comparision of two methods for the trajectory outlier detection. Firstly, TOP-EYE algorithm, which gradually computes and accumulates outlying score of a trajectory. Secondly, a model-based method which uses the Gaussian mixture model (GMM) and identifies trajectories not following the learned model as outliers.
Klíčová slova
data mining, outlier detection, moving objects data, trajectory, surveillance video, TOP-EYE, GMM
Autoři
PEŠEK, M.
Vydáno
26. 4. 2012
Nakladatel
Brno University of Technology
Místo
Brno
ISBN
978-80-214-4462-1
Kniha
Proceedings of the 18th Conference STUDENT EEICT 2012
Edice
Volume 3
Strany od
474
Strany do
478
Strany počet
5
URL
BibTex
@inproceedings{BUT192806,
author="Martin {Pešek}",
title="Methods for Trajectory Outlier Detection in Surveillance Video",
booktitle="Proceedings of the 18th Conference STUDENT EEICT 2012",
year="2012",
series="Volume 3",
pages="474--478",
publisher="Brno University of Technology",
address="Brno",
isbn="978-80-214-4462-1",
url="http://www.feec.vutbr.cz/EEICT/2012/sbornik/03doktorskeprojekty/11inteligentnisystemy/03-xpesek07.pdf"
}