Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PECHER, B. ČEGIŇ, J. BELANEC, R. SRBA, I. ŠIMKO, J. BIELIKOVÁ, M.
Originální název
Fighting Randomness With Randomness: Mitigating Optimisation Instability of Fine-Tuning Using Ensemble and Noise Regularisation
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
While fine-tuning of pre-trained language models generally helps to overcome the lack of labelled training samples, it also displays model performance instability. This instability mainly originates from randomness in initialisation or data shuffling. To address this, researchers either modify the training process or augment the available samples, which typically results in increased computational costs. We propose a new mitigation strategy, called Delayed Ensemble with Noisy Interpolation (DENI), that leverages the strengths of ensembling, noise regularisation and model interpolation, while retaining computational efficiency. We compare DENI with 9 representative mitigation strategies across 3 models, 4 tuning strategies and 7 text classification datasets. We show that: 1) DENI outperforms the best performing mitigation strategy (Ensemble), while using only a fraction of its cost; 2) the mitigation strategies are beneficial for parameter-efficient fine-tuning (PEFT) methods, outperforming full fine-tuning in specific cases; and 3) combining DENI with data augmentation often leads to even more effective instability mitigation.
Klíčová slova
NLP in resource-constrained settings, parameter-efficient-training, data-efficient training, data augmentation, fine-tuning, mitigating randomness, ensembling
Autoři
PECHER, B.; ČEGIŇ, J.; BELANEC, R.; SRBA, I.; ŠIMKO, J.; BIELIKOVÁ, M.
Vydáno
2. 11. 2024
Nakladatel
Association for Computational Linguistics
Místo
Miami
ISBN
979-8-8917-6168-1
Kniha
Findings of the Association for Computational Linguistics: EMNLP 2024
Strany od
11005
Strany do
11044
Strany počet
40
BibTex
@inproceedings{BUT193319, author="PECHER, B. and ČEGIŇ, J. and BELANEC, R. and SRBA, I. and ŠIMKO, J. and BIELIKOVÁ, M.", title="Fighting Randomness With Randomness: Mitigating Optimisation Instability of Fine-Tuning Using Ensemble and Noise Regularisation", booktitle="Findings of the Association for Computational Linguistics: EMNLP 2024", year="2024", pages="11005--11044", publisher="Association for Computational Linguistics", address="Miami", doi="10.18653/v1/2024.findings-emnlp.644", isbn="979-8-8917-6168-1" }