Detail publikace
Speech and Language Recognition with Low-rank Adaptation of Pretrained Models
PRASAD, A. MADIKERI, S. KHALIL, D. MOTLÍČEK, P. SCHUEPBACH, C.
Originální název
Speech and Language Recognition with Low-rank Adaptation of Pretrained Models
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Finetuning large pretrained models demands considerable computational resources, posing practical constraints. Major- ity of the total number of parameters in these models are used by fully connected layers. In this work, we consider applying a semi-orthogonal constraint, followed by full finetuning to the fully connected layers reduces model parameters significantly without sacrificing efficacy in downstream tasks. Specifically, we consider wav2vec2.0 XLS-R and Whisper models for Auto- matic Speech Recognition and Language Recognition. Our re- sults show that we can reduce the model size by approximately 24% during both training and inference time with 0.7% absolute drop in performance for XLS-R and no drop in performance for Whisper for ASR. In combination with performance-efficient training with low-rank adapters, the resource requirements for training can be further reduced by up to 90%.
Klíčová slova
parameter reduction, language identification, speech recognition, wav2vec2.0
Autoři
PRASAD, A.; MADIKERI, S.; KHALIL, D.; MOTLÍČEK, P.; SCHUEPBACH, C.
Vydáno
1. 9. 2024
Nakladatel
International Speech Communication Association
Místo
Kos Island
ISSN
1990-9772
Periodikum
Proceedings of Interspeech
Ročník
2024
Číslo
9
Stát
Francouzská republika
Strany od
2825
Strany do
2829
Strany počet
5
URL
BibTex
@inproceedings{BUT193370,
author="PRASAD, A. and MADIKERI, S. and KHALIL, D. and MOTLÍČEK, P. and SCHUEPBACH, C.",
title="Speech and Language Recognition with Low-rank Adaptation of Pretrained Models",
booktitle="Proceedings of Interspeech",
year="2024",
journal="Proceedings of Interspeech",
volume="2024",
number="9",
pages="2825--2829",
publisher="International Speech Communication Association",
address="Kos Island",
doi="10.21437/Interspeech.2024-2187",
issn="1990-9772",
url="https://www.isca-archive.org/interspeech_2024/prasad24_interspeech.html"
}
Dokumenty