Detail publikace

BESST Dataset: A Multimodal Resource for Speech-based Stress Detection and Analysis

PEŠÁN, J. JUŘÍK, V. KARAFIÁT, M. ČERNOCKÝ, J.

Originální název

BESST Dataset: A Multimodal Resource for Speech-based Stress Detection and Analysis

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

The Brno Extended Stress and Speech Test (BESST) dataset is a new resource for the speech research community, offering multimodal audiovisual, physiological and psychological data that enable investigations into the interplay between stress and speech. In this paper, we introduce the BESST dataset and provide a details of its design, collection protocols, and technical aspects. The dataset comprises speech samples, physiologi- cal signals (including electrocardiogram, electrodermal activity, skin temperature, and acceleration data), and video recordings from 90 subjects performing stress-inducing tasks. It comprises 16.9 hours of clean Czech speech data, averaging 15 minutes of clean speech per participant. The data collection procedure involves the induction of cognitive and physical stress induced by Reading Span task (RSPAN) and Hand Immersion (HIT) task respectively. The BESST dataset was collected under stringent ethical standards and is accessible for research and development.

Klíčová slova

BESST dataset, stress recognition, multimodal data, speech research, physiological signals, cognitive load, speech production

Autoři

PEŠÁN, J.; JUŘÍK, V.; KARAFIÁT, M.; ČERNOCKÝ, J.

Vydáno

1. 9. 2024

Nakladatel

International Speech Communication Association

Místo

Kos

ISSN

1990-9772

Periodikum

Proceedings of Interspeech

Ročník

2024

Číslo

9

Stát

Francouzská republika

Strany od

1355

Strany do

1359

Strany počet

5

URL

BibTex

@inproceedings{BUT193740,
  author="PEŠÁN, J. and JUŘÍK, V. and KARAFIÁT, M. and ČERNOCKÝ, J.",
  title="BESST Dataset: A Multimodal Resource for Speech-based Stress Detection and Analysis",
  booktitle="Proceedings of Interspeech 2024",
  year="2024",
  journal="Proceedings of Interspeech",
  volume="2024",
  number="9",
  pages="1355--1359",
  publisher="International Speech Communication Association",
  address="Kos",
  doi="10.21437/Interspeech.2024-42",
  issn="1990-9772",
  url="https://www.isca-archive.org/interspeech_2024/pesan24_interspeech.pdf"
}

Dokumenty