Detail publikace
Model Predictive Controller Based on Neural Network Used for Multi-Dimensional Control
P. Nepevný, P. Pivoňka
Originální název
Model Predictive Controller Based on Neural Network Used for Multi-Dimensional Control
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper presents a solution of multi-dimensional Model Predictive Control (MPC) based on feed-forward Neural Network (NN) model. Autoregressive NN model with back-propagation learning algorithm is used for system output prediction. It is able to observe system changes and adapt itself, therefore adaptive MPC controller is obtained. MPC is a kind of optimal controller, because a control action is always optimal according to the given criterion. There is shown, how to create multi-dimensional predictive controller. Possibilities of multi-dimensional MPC were tested on laboratory physical model – hot-air tunnel. Two quantities of hot-air tunnel were controlled – the air flow and the temperature. The algorithm was implemented in MATLAB-Simulink and tested on a physical model. Communication between PC and hot-air tunnel was provided by PLC (connected via Ethernet).
Klíčová slova
Predictive Controllers, Neural Networks for Identification, Multi-Dimensional Control
Autoři
P. Nepevný, P. Pivoňka
Rok RIV
2006
Vydáno
2. 10. 2006
Nakladatel
Rektor der Hochschule Zittau/Gorlitz
Místo
Zittau
ISBN
3-9808089-8-X
Kniha
East West Fuzzy Colloquium
Strany od
69
Strany do
74
Strany počet
6
BibTex
@inproceedings{BUT19681,
author="Petr {Nepevný} and Petr {Pivoňka}",
title="Model Predictive Controller Based on Neural Network Used for Multi-Dimensional Control",
booktitle="East West Fuzzy Colloquium",
year="2006",
pages="6",
publisher="Rektor der Hochschule Zittau/Gorlitz",
address="Zittau",
isbn="3-9808089-8-X"
}