Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SCHMIDT, M., PIVOŇKA, P.
Originální název
Advantages of Neural Networks in Adaptive Control
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper discusses the problems adaptive controllers have to face when working with a sampling period that is significantly shorter than the global time constant of the controlled system. A short sampling period is beneficial for disturbance cancellation, but it makes on-line identification of the system difficult in the presence of quantization effect, noise and disturbances. Neural networks present a promising approach to solving the problem. However, there remains a problem with extracting useful information about the system's dynamics in the form of training patterns for commonly used regressive models. Ways to enrich the training patterns with information about the system's behaviour are discussed.
Klíčová slova
Adaptive Control, Neural Networks for Identification
Autoři
Rok RIV
2006
Vydáno
1. 10. 2006
Nakladatel
Rektor der Hochschule Zittau/Gorlitz
Místo
Zittau
ISBN
3-9808089-8-X
Kniha
13th Zittau Fuzzy Coloquium
Strany od
75
Strany do
80
Strany počet
6
BibTex
@inproceedings{BUT19696, author="Michal {Schmidt} and Petr {Pivoňka}", title="Advantages of Neural Networks in Adaptive Control", booktitle="13th Zittau Fuzzy Coloquium", year="2006", pages="6", publisher="Rektor der Hochschule Zittau/Gorlitz", address="Zittau", isbn="3-9808089-8-X" }