Detail publikace
Fibre-reinforced cementitious composite: parameter identification using Ohno shear beam test
LEHKÝ, D. PUKL, R. NOVÁK, D. LIPOWCZAN, M.
Originální název
Fibre-reinforced cementitious composite: parameter identification using Ohno shear beam test
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Computational-experimental methodology based on artificial neural networks used to identify the material parameters of fibre-reinforced cementitious composite is presented and applied for Ohno shear beam test. The aim is to provide techniques for an advanced assessment of the mechanical fracture properties of these materials, and the subsequent numerical simulation of components/structures made from them. The paper describes the development of computational and material models utilized for efficient material parameter determination with regards to a studied composite. The data is used in inverse analysis based on artificial neural networks together with sensitivity analysis which plays an important role in the process. Developed software tool FRCID-S is also briefly described.
Klíčová slova
Shear test, Ohno beam, nonlinear analysis, inverse analysis, artificial neural network
Autoři
LEHKÝ, D.; PUKL, R.; NOVÁK, D.; LIPOWCZAN, M.
Vydáno
23. 11. 2021
Nakladatel
IOP PUBLISHING LTD
Místo
BRISTOL
ISSN
1757-899X
Periodikum
IOP Conference Series: Materials Science and Engineering
Ročník
1205
Číslo
012023
Stát
Spojené království Velké Británie a Severního Irska
Strany od
1
Strany do
8
Strany počet
8
URL
BibTex
@inproceedings{BUT197208,
author="David {Lehký} and Radomír {Pukl} and Drahomír {Novák} and Martin {Lipowczan}",
title="Fibre-reinforced cementitious composite: parameter identification using Ohno shear beam test",
booktitle="IOP Conference Series: Materials Science and Engineering",
year="2021",
journal="IOP Conference Series: Materials Science and Engineering",
volume="1205",
number="012023",
pages="1--8",
publisher="IOP PUBLISHING LTD",
address="BRISTOL",
doi="10.1088/1757-899X/1205/1/012023",
issn="1757-899X",
url="https://iopscience.iop.org/article/10.1088/1757-899X/1205/1/012023/pdf"
}