Detail publikace
Likelihood Consensus 2.0: Reducing Interagent Communication in Distributed Bayesian Target Tracking
ŠAUŠA, E. RAJMIC, P. HLAWATSCH, F.
Originální název
Likelihood Consensus 2.0: Reducing Interagent Communication in Distributed Bayesian Target Tracking
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
We propose a communication-efficient scheme for distributed Bayesian target tracking (distributed particle filtering) in possibly nonlinear and non-Gaussian state-space models. The scheme is a sparsity-promoting evolution of the likelihood consensus (LC) that uses the orthogonal matching pursuit (OMP), a B-spline dictionary, a distributed adaptive determination of the relevant state-space region, and an efficient binary representation of the LC expansion coefficients. Our simulation results show that a reduction of interagent communication by a factor of about 190 can be obtained without compromising the tracking performance.
Klíčová slova
Target tracking; distributed particle filter; Bayesian filtering; likelihood consensus; sparsity
Autoři
ŠAUŠA, E.; RAJMIC, P.; HLAWATSCH, F.
Vydáno
14. 4. 2024
Nakladatel
IEEE
Místo
Soul
ISBN
979-8-3503-4485-1
Kniha
49th IEEE International Conference on Acoustics, Speech, and Signal Processing
Strany počet
5
BibTex
@inproceedings{BUT197325,
author="Erik {Šauša} and Pavel {Rajmic} and Franz {Hlawatsch}",
title="Likelihood Consensus 2.0: Reducing Interagent Communication in Distributed Bayesian Target Tracking",
booktitle="49th IEEE International Conference on Acoustics, Speech, and Signal Processing",
year="2024",
pages="5",
publisher="IEEE",
address="Soul",
doi="10.1109/ICASSP48485.2024.10447108",
isbn="979-8-3503-4485-1"
}