Detail publikace
Fractional Integration and Differentiation of Asymptotic Relations and Applications
ŘEHÁK, P.
Originální název
Fractional Integration and Differentiation of Asymptotic Relations and Applications
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
The main results of this paper show how asymptotic relations are preserved when integrated or differentiated in the sense of fractional operators. In some of them, the concept of regular variation plays a role. We derive a fractional extension of the Karamata integration theorem and of the monotone density theorem, among others. We offer several approaches that provide deeper insight into relationships between different concepts. Illustrative applications in fractional differential equations are also presented.
Klíčová slova
asymptotic relations; fractional calculus; fractional differential equations; Karamata theorem; regular variation
Autoři
ŘEHÁK, P.
Vydáno
1. 4. 2025
Nakladatel
WILEY
Místo
HOBOKEN
ISSN
1099-1476
Periodikum
Mathematical Methods in the Applied Sciences
Ročník
48
Číslo
6
Stát
Spojené království Velké Británie a Severního Irska
Strany od
6381
Strany do
6395
Strany počet
15
URL
BibTex
@article{BUT197374,
author="Pavel {Řehák}",
title="Fractional Integration and Differentiation of Asymptotic Relations and Applications",
journal="Mathematical Methods in the Applied Sciences",
year="2025",
volume="48",
number="6",
pages="6381--6395",
doi="10.1002/mma.10679",
issn="1099-1476",
url="https://onlinelibrary.wiley.com/doi/10.1002/mma.10679"
}