Detail publikace

Fractional Integration and Differentiation of Asymptotic Relations and Applications

ŘEHÁK, P.

Originální název

Fractional Integration and Differentiation of Asymptotic Relations and Applications

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The main results of this paper show how asymptotic relations are preserved when integrated or differentiated in the sense of fractional operators. In some of them, the concept of regular variation plays a role. We derive a fractional extension of the Karamata integration theorem and of the monotone density theorem, among others. We offer several approaches that provide deeper insight into relationships between different concepts. Illustrative applications in fractional differential equations are also presented.

Klíčová slova

asymptotic relations; fractional calculus; fractional differential equations; Karamata theorem; regular variation

Autoři

ŘEHÁK, P.

Vydáno

1. 4. 2025

Nakladatel

WILEY

Místo

HOBOKEN

ISSN

1099-1476

Periodikum

Mathematical Methods in the Applied Sciences

Ročník

48

Číslo

6

Stát

Spojené království Velké Británie a Severního Irska

Strany od

6381

Strany do

6395

Strany počet

15

URL

BibTex

@article{BUT197374,
  author="Pavel {Řehák}",
  title="Fractional Integration and Differentiation of Asymptotic Relations and Applications",
  journal="Mathematical Methods in the Applied Sciences",
  year="2025",
  volume="48",
  number="6",
  pages="6381--6395",
  doi="10.1002/mma.10679",
  issn="1099-1476",
  url="https://onlinelibrary.wiley.com/doi/10.1002/mma.10679"
}