Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HILSCHER, R. RŮŽIČKOVÁ, V.
Originální název
Perturbation of nonnegative time scale quadratic functionals
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
In this paper we consider a bounded time scale T=[a,b] , a quadratic functional F(x,u) defined over such time scale, and its perturbation G(x,u)=F(x,u)+\alpha\,|x(a)|2 , where the endpoints of F are zero, while the initial endpoint x(a) of G can vary and x(b) is zero. It is known that there is no restriction on x(a) in G when studying the positivity of these functionals. We prove that, when studying the nonnegativity, the initial state x(a) in G must be restricted to a certain subspace, which is the kernel of a specific conjoined basis of the associated time scale symplectic system. This result generalizes a known discrete-time special case, but it is new for the corresponding continuous-time case. We provide several examples which illustrate the theory.
Klíčová slova
Quadratic functional, Nonnegativity, Positivity, Time scale, Time scale symplectic system, Hamiltonian system
Autoři
HILSCHER, R.; RŮŽIČKOVÁ, V.
Vydáno
1. 5. 2007
ISBN
978-981-270-643-0
Kniha
DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS Proceedings of the International Conference
Strany od
266
Strany do
275
Strany počet
10
BibTex
@inproceedings{BUT20211, author="Roman Šimon {Hilscher} and Viera {Štoudková Růžičková}", title="Perturbation of nonnegative time scale quadratic functionals", booktitle="DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS Proceedings of the International Conference", year="2007", pages="266--275", isbn="978-981-270-643-0" }