Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
Nepevný, P., Pivoňka, P.
Originální název
Hot-Air Tunel Control Using Multi-Dimensional Predictive Controller Based on Neural Network Model
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper presents using of a multi-dimensional model predictive controller for hot-air tunnel control. Two quantities of hot-air tunnel are controlled – the air flow and the temperature. Mode predictive controller is a kind of optimal controller based on model. Model predicts future system output, which is used for finding an optimal control action. We used a feed-forward neural network model with backpropagation learning algorithm. Obtained controller is adaptive, because the neural network model is able to observe system changes and adapt itself. The algorithm was implemented in MATLAB-Simulink and tested on a physical model. Communication between PC and hot-air tunnel was provided by PLC (connected via Ethernet.
Klíčová slova
MPC, prediction, neural network, control, multidimensional control
Autoři
Rok RIV
2006
Vydáno
12. 11. 2006
Nakladatel
DAAAM International Vienna
Místo
Vídeň
ISBN
3-901509-57-7
Kniha
Anals of DAAAM for 2006 & Proceedings
Strany od
267
Strany do
268
Strany počet
2
BibTex
@inproceedings{BUT24156, author="Petr {Nepevný} and Petr {Pivoňka}", title="Hot-Air Tunel Control Using Multi-Dimensional Predictive Controller Based on Neural Network Model", booktitle="Anals of DAAAM for 2006 & Proceedings", year="2006", pages="2", publisher="DAAAM International Vienna", address="Vídeň", isbn="3-901509-57-7" }