Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠVEC, P.
Originální název
A Construction of the 2D Generalized Voronoi Diagram, Part I: An Approximation Algorithm
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper proposes a new approximation algorithm for constructing the Generalized Voronoi diagram (GVD) for point, line, or polygonal generators based on Fortune’s plane sweep technique. The algorithm approximates a line generator or polygonal edge generators by a sequence of point generator with a given precision. This approach attempts to detect edges of narrow corridors, which are approximated with more points than others, thereby the computation is faster than in case of the uniform distribution with the same precision in these narrow corridors. The worst-time complexity of the computation is O(n log n), where n is the number of approximation point generators. This approximation algorithm is suitable for generating the GVD serving as a base for sampling-based robot motion planning methods, especially for robots with many degrees of freedom, by assuring the maximal clearance distance from surrounding obstacles.
Klíčová slova
Generalized Voronoi diagram, Fortune’s plane sweep algorithm
Autoři
Rok RIV
2006
Vydáno
1. 5. 2006
Nakladatel
Brno University of Technology
Místo
Brno
ISBN
80-214-3195-4
Kniha
Proceedings of the 12th International Conference on Soft Computing MENDEL 2006
Strany od
124
Strany do
134
Strany počet
11
BibTex
@inproceedings{BUT24983, author="Petr {Švec}", title="A Construction of the 2D Generalized Voronoi Diagram, Part I: An Approximation Algorithm", booktitle="Proceedings of the 12th International Conference on Soft Computing MENDEL 2006", year="2006", volume="2006", pages="11", publisher="Brno University of Technology", address="Brno", isbn="80-214-3195-4" }