Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PIVOŇKA, P. VELEBA, V. OŠMERA, P.
Originální název
Using of Neural Network Based Identification for Short Sampling Period in Adaptive Control
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The new approach to analysis of on-line identification methods based on one-step-ahead prediction clears up their sensitivity to disturbances in control loop and explain why should be neural network based identification better then classical by using of short sampling period. The use of short sampling period in adaptive control has not been described properly when controlling the real process by adaptive controller. On one hand faster disturbance rejection due to short sampling period can be an advantage but on the other hand it brings us some practical problems. Particularly, quantization error and finite numerical precision of industrial controller must be considered in the real process control. We concentrate our attention on dealing with adverse effects that work on real-time identification of process, especially quantization. It is shown; that a neural network applied to on-line identification process produces more stable solution in the rapid sampling.
Klíčová slova
Rapid sampling domain, Neural networks for identification, Comparison of identifications methods
Autoři
PIVOŇKA, P.; VELEBA, V.; OŠMERA, P.
Rok RIV
2007
Vydáno
23. 7. 2007
Nakladatel
WSEAS
Místo
Řecko
ISBN
978-960-8457-90-4
Kniha
Systems Theory and Applications
Edice
Vol. 2.
Číslo edice
1.
Strany od
217
Strany do
222
Strany počet
6
BibTex
@inproceedings{BUT28312, author="Petr {Pivoňka} and Václav {Veleba} and Pavel {Ošmera}", title="Using of Neural Network Based Identification for Short Sampling Period in Adaptive Control", booktitle="Systems Theory and Applications", year="2007", series="Vol. 2.", number="1.", pages="217--222", publisher="WSEAS", address="Řecko", isbn="978-960-8457-90-4" }