Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
CHMELAŘ, P. ZENDULKA, J.
Originální název
Visual Surveillance Metadata Management
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
The paper deals with a solution for visual surveillance metadata management. Data coming from many cameras is annotated using computer vision units to produce metadata representing moving objects in their states. It is assumed that the data is often uncertain, noisy and some states are missing. The solution consists of the following three layers: (a) data cleaning layer - improves quality of the data by smoothing it and by filling in missing states in short sequences referred to as tracks that represent a composite state of a moving object in a spatiotemporal subspace followed by one camera. (b) Data integration layer - assigns a global identity to tracks that represent the same object. (c) Persistence layer - manages the metadata in a database so that it can be used for online identification and offline querying, analyzing and mining. A Kalman filter technique is used to solve (a) and a classification based on the moving object's state and its visual properties is used in (b). An object model for layer (c) is presented too.
Klíčová slova
Visual surveillance, metadata management, cameras, vision units, moving objects, data cleaning, integration, persistence, Kalman filter, classification, object model.
Autoři
CHMELAŘ, P.; ZENDULKA, J.
Rok RIV
2007
Vydáno
2. 9. 2007
Nakladatel
IEEE Computer Society Press
Místo
Regensburg
ISBN
978-0-7695-2932-5
Kniha
Eighteenth International Workshop on Database and Expert Systems Applications
Edice
IEEE CPS
Strany od
79
Strany do
83
Strany počet
5
BibTex
@inproceedings{BUT28830, author="Petr {Chmelař} and Jaroslav {Zendulka}", title="Visual Surveillance Metadata Management", booktitle="Eighteenth International Workshop on Database and Expert Systems Applications", year="2007", series="IEEE CPS", pages="79--83", publisher="IEEE Computer Society Press", address="Regensburg", isbn="978-0-7695-2932-5" }