Detail publikace

Numerical matrix exponential function derivative via Laplace transform approach

BRANČÍK, L.

Originální název

Numerical matrix exponential function derivative via Laplace transform approach

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

The paper deals with a method how to determine a derivative of a matrix exponential function with respect to a parameter inside a matrix of the exponent. The considered technique is based on a Laplace transform approach when, in the transform domain, the derivative is easily stated. To get a result in the original domain, however, it is necessary to use some numerical technique of an inverse Laplace transform (NILT). In the paper, two such methods are presented. To ensure numerical stability of the computation the NILT method is always preceeded by scaling to decrease a Euclidean norm of the matrix below a predefined value, and followed by squaring to return it to the original value. The method finds its practical application in various fields of the electrical engineering simulation, e.g. for a sensitivity analysis in systems with multiconductor transmission lines as their distributed parts.

Klíčová slova

matrix exponential function, derivative, Laplace transform, numerical inversion, sensitivity

Autoři

BRANČÍK, L.

Rok RIV

2009

Vydáno

11. 2. 2009

Nakladatel

ARGESIM / ASIM

Místo

Vídeň

ISBN

978-3-901608-35-3

Kniha

Proceedings MATHMOD 09 Vienna, Full Papers CD Volume

Strany od

2612

Strany do

2615

Strany počet

4

URL

BibTex

@inproceedings{BUT32711,
  author="Lubomír {Brančík}",
  title="Numerical matrix exponential function derivative via Laplace transform approach",
  booktitle="Proceedings MATHMOD 09 Vienna, Full Papers CD Volume",
  year="2009",
  pages="2612--2615",
  publisher="ARGESIM / ASIM",
  address="Vídeň",
  isbn="978-3-901608-35-3",
  url="http://www.mathmod.at/"
}