Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BRANČÍK, L.
Originální název
Numerical matrix exponential function derivative via Laplace transform approach
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper deals with a method how to determine a derivative of a matrix exponential function with respect to a parameter inside a matrix of the exponent. The considered technique is based on a Laplace transform approach when, in the transform domain, the derivative is easily stated. To get a result in the original domain, however, it is necessary to use some numerical technique of an inverse Laplace transform (NILT). In the paper, two such methods are presented. To ensure numerical stability of the computation the NILT method is always preceeded by scaling to decrease a Euclidean norm of the matrix below a predefined value, and followed by squaring to return it to the original value. The method finds its practical application in various fields of the electrical engineering simulation, e.g. for a sensitivity analysis in systems with multiconductor transmission lines as their distributed parts.
Klíčová slova
matrix exponential function, derivative, Laplace transform, numerical inversion, sensitivity
Autoři
Rok RIV
2009
Vydáno
11. 2. 2009
Nakladatel
ARGESIM / ASIM
Místo
Vídeň
ISBN
978-3-901608-35-3
Kniha
Proceedings MATHMOD 09 Vienna, Full Papers CD Volume
Strany od
2612
Strany do
2615
Strany počet
4
URL
http://www.mathmod.at/
BibTex
@inproceedings{BUT32711, author="Lubomír {Brančík}", title="Numerical matrix exponential function derivative via Laplace transform approach", booktitle="Proceedings MATHMOD 09 Vienna, Full Papers CD Volume", year="2009", pages="2612--2615", publisher="ARGESIM / ASIM", address="Vídeň", isbn="978-3-901608-35-3", url="http://www.mathmod.at/" }