Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
JAROŠ, J. SCHWARZ, J.
Originální název
Parallel BMDA with an Aggregation of Probability Models
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The paper is focused on the problem of aggregation of probability distribution applicable for parallel Bivariate Marginal Distribution Algorithm (pBMDA). A new approach based 000274803100222on quantitative combination of probabilistic models is presented. Using this concept, the traditional migration of individuals is replaced with a newly proposed technique of probability parameter migration. In the proposed strategy, the adaptive learning of the resident probability model is used. The short theoretical study is completed by an experimental works for the implemented parallel BMDA algorithm (pBMDA). The performance of pBMDA algorithm is evaluated for various problem size (scalability) and interconnection topology. In addition, the comparison with the previously published aBMDA is presented.
Klíčová slova
BMDA, aggregation, probability distributions, migration
Autoři
JAROŠ, J.; SCHWARZ, J.
Rok RIV
2009
Vydáno
20. 5. 2009
Nakladatel
IEEE Computational Intelligence Society
Místo
Trondheim
ISBN
978-1-4244-2959-2
Kniha
Proceeding of 2009 IEEE Congress on Evolutionary Computation
Strany od
1683
Strany do
1690
Strany počet
8
URL
https://www.fit.vut.cz/research/publication/8948/
BibTex
@inproceedings{BUT33724, author="Jiří {Jaroš} and Josef {Schwarz}", title="Parallel BMDA with an Aggregation of Probability Models", booktitle="Proceeding of 2009 IEEE Congress on Evolutionary Computation", year="2009", pages="1683--1690", publisher="IEEE Computational Intelligence Society", address="Trondheim", isbn="978-1-4244-2959-2", url="https://www.fit.vut.cz/research/publication/8948/" }