Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BURGET, R. BURGETOVÁ, I.
Originální název
Web Page Element Classification Based on Visual Features
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
When applying the traditional data mining methods to World Wide Web documents, the typical problem is that a normal web page contains a variety of information of different kinds in addition to its main content. This additional information such as navigation, advertisement or copyright notices negatively influences the results of the data mining methods as for example the content classification. In this paper, we present a method of interesting area detection in a web page. This method is inspired by an assumed human reader approach to this task. First, basic visual blocks are detected in the page and subsequently, the purpose of these blocks is guessed based on their visual appearance. We describe a page segmentation method used for the visual block detection, we propose a way of the block classification based on the visual features and finally, we provide an experimental evaluation of the method on real-world data.
Klíčová slova
page segmentation, preprocessing, classification, visual features, visual blocks
Autoři
BURGET, R.; BURGETOVÁ, I.
Rok RIV
2009
Vydáno
1. 4. 2009
Nakladatel
IEEE Computer Society
Místo
Dong Hoi
ISBN
978-0-7695-3580-7
Kniha
1st Asian Conference on Intelligent Information and Database Systems ACIIDS 2009
Strany od
67
Strany do
72
Strany počet
6
BibTex
@inproceedings{BUT33776, author="Radek {Burget} and Ivana {Burgetová}", title="Web Page Element Classification Based on Visual Features", booktitle="1st Asian Conference on Intelligent Information and Database Systems ACIIDS 2009", year="2009", pages="67--72", publisher="IEEE Computer Society", address="Dong Hoi", isbn="978-0-7695-3580-7" }