Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BOZGA, M. IOSIF, R. KONEČNÝ, F.
Originální název
Fast Acceleration of Ultimately Periodic Relations
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
Computing transitive closures of integer relations is the key to finding precise invariants of integer programs. In this paper, we describe an efficient algorithm for computing the transitive closures of difference bounds, octagonal and finite monoid affine relations. On the theoretical side, this framework provides a common solution to the acceleration problem, for all these three classes of relations. In practice, according to our experiments, the new method performs up to four orders of magnitude better than the previous ones, making it a promising approach for the verification of integer programs.
Klíčová slova
acceleration, counter systems, difference bounds relations, octagonal relations, finite monoid affine relations
Autoři
BOZGA, M.; IOSIF, R.; KONEČNÝ, F.
Rok RIV
2010
Vydáno
9. 7. 2010
Nakladatel
Springer Verlag
Místo
Berlin
ISBN
978-3-642-14294-9
Kniha
Computer Aided Verification
Edice
Lecture Notes in Computer Science
Strany od
227
Strany do
242
Strany počet
15
URL
https://www.fit.vut.cz/research/publication/9278/
BibTex
@inproceedings{BUT34831, author="Marius {Bozga} and Iosif {Radu} and Filip {Konečný}", title="Fast Acceleration of Ultimately Periodic Relations", booktitle="Computer Aided Verification", year="2010", series="Lecture Notes in Computer Science", volume="6174", pages="227--242", publisher="Springer Verlag", address="Berlin", isbn="978-3-642-14294-9", url="https://www.fit.vut.cz/research/publication/9278/" }