Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SCHWARZ, J. OČENÁŠEK, J.
Originální název
Multiobjective Bayesian Optimization Algorithm for Combinatorial Problems: Theory and Practice
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
This paper deals with the utilizing of the Bayesian optimization algorithm (BOA) for the multiobjective optimization of combinatorial problems. Three probabilistic models used in the Estimation Distribution Algorithms (EDA), such as UMDA, BMDA and BOA which allow to search effectively on the promising areas of the combinatorial search space are discussed. The main attention is focused on the incorporation of Pareto optimality concept into classical structure of the BOA algorithm. We have modified the standard algorithm BOA for one criterion optimization utilizing the known niching techniques to find the Pareto optimal set. The experiments are focused on tree classes of the combinatorial problems: artificial problem with known Pareto set, multiple 0/1 knapsack problem and the bisectioning of hypergraphs as well.
Klíčová slova
Multiobjective optimization, Pareto and non Pareto algorithms, evolutionary algorithms, probabilistic model, estimation distribution algorithms, Bayesian optimization algorithm, niching techniques
Autoři
SCHWARZ, J.; OČENÁŠEK, J.
Rok RIV
2001
Vydáno
9. 7. 2001
ISSN
1210-0552
Periodikum
NEURAL NETWORK WORLD
Ročník
11
Číslo
5
Stát
Česká republika
Strany od
423
Strany do
441
Strany počet
19
URL
http://www.fit.vutbr.cz/~schwarz/PDFCLANKY/nnw01.ps
BibTex
@article{BUT40359, author="Josef {Schwarz} and Jiří {Očenášek}", title="Multiobjective Bayesian Optimization Algorithm for Combinatorial Problems: Theory and Practice", journal="NEURAL NETWORK WORLD", year="2001", volume="11", number="5", pages="423--441", issn="1210-0552", url="http://www.fit.vutbr.cz/~schwarz/PDFCLANKY/nnw01.ps" }