Detail publikace

On the Mayer problem I. General principles

CHRASTINOVÁ, V. TRYHUK, V.

Originální název

On the Mayer problem I. General principles

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

Given an underdetermined system of ordinary differential equations (i.e., the Monge system, the optimal control system) expressed by Pfaffian equations $\omega\equiv 0 \ (\omega\in\Omega)$ where $\Omega$ is a~module of differential 1--forms on a~space $\bf{M}$, we determine submodules $\breve\Omega\subset\Omega$ which satisfy the congruence $d\breve\Omega\simeq 0$ ($\mbox{mod}\,\breve\Omega, \Omega\wedge\Omega$) along a~certain special subspace $\mathbf{E}\subset\mathbf{M}$ of the total space $\mathbf{M}$. Then $\breve\Omega$ and $\mathbf{E}$ may be interpreted in terms of Poincar\'e--Cartan forms and Euler--Lagrange equations for various Mayer problems that belong to the given Monge system. They yield a~universal canonical formalism including the Weierstrass--Hilbert extremality theory. The occurences of uncertain coefficients (Lagrange multipliers, adjoint variables) are suppressed and occasionally eliminated (e.g., for all Mayer problems arising from a~Lagrange problem), the degenerate cases are not excluded.

Klíčová slova

diffiety, Mayer problem, Poincaré-Cartan module, Euler-Lagrange subspace, Hamilton--Jacobi equation

Autoři

CHRASTINOVÁ, V.; TRYHUK, V.

Rok RIV

2002

Vydáno

1. 1. 2002

Nakladatel

SAV

Místo

Bratislava

ISSN

0139-9918

Periodikum

Mathematica Slovaca

Ročník

52

Číslo

5

Stát

Slovenská republika

Strany od

555

Strany do

570

Strany počet

16

BibTex

@article{BUT41269,
  author="Veronika {Chrastinová} and Václav {Tryhuk}",
  title="On the Mayer problem I. General principles",
  journal="Mathematica Slovaca",
  year="2002",
  volume="52",
  number="5",
  pages="555--570",
  issn="0139-9918"
}