Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
CHRASTINOVÁ, V. TRYHUK, V.
Originální název
On the Mayer problem II. Examples
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
Given an underdetermined system of ordinary differential equations, extremals of all possible variational problems relevant to the system together with the corresponding Poincar\'e--Cartan forms were characterized in geometrical terms in previous Part I of this article. The present Part II demonstrates the utility of this approach: it enables a deep insight into the structure of Euler--Lagrange and Hamilton--Jacobi equations not available by other methods and provides the sufficient extremality conditions without uncertain multipliers similar to the common Hilbert--Weierstrass theory. Degenerate variational problems are in principle not excluded and, like in the "royal road" by Carath\'eodory, no subtle investigation of admissible variations satisfying the boundary conditions is needed.
Klíčová slova
diffiety, Mayer problem, Poincaré-Cartan module, Euler-Lagrange subspace, Hamilton--Jacobi equation
Autoři
CHRASTINOVÁ, V.; TRYHUK, V.
Rok RIV
2002
Vydáno
1. 1. 2002
Nakladatel
SAV
Místo
Bratislava
ISSN
0139-9918
Periodikum
Mathematica Slovaca
Ročník
52
Číslo
5
Stát
Slovenská republika
Strany od
571
Strany do
590
Strany počet
20
BibTex
@article{BUT41270, author="Veronika {Chrastinová} and Václav {Tryhuk}", title="On the Mayer problem II. Examples", journal="Mathematica Slovaca", year="2002", volume="52", number="5", pages="571--590", issn="0139-9918" }