Detail publikace
Homogenization of heat equation with hysteresis
FRANCŮ, J.
Originální název
Homogenization of heat equation with hysteresis
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
The contribution delas with heat equaition in the form (c u+W[u])_t=div(a.grad u)=f, where the functional operator W[u] is Prandtl-Ishlinskii hysteresis operator of play type characterized by a distribution function eta. The spatially dependent initial boundary value problem is studied. Proof of existence and uniqueness of the solution is omitted since the proof is a slightly modified proof by Brokate-Sprekels. The homogenization problem for this equation si studied. For eps->0, a sequence of problems of the above type with spatially eps-periodic coefficients c^eps, eta,^eps, a^eps si considered. The coefficients c^star,eta^star and a^star in the homogenized problem are identified and convergence of the corresponding solutions u^eps to u^star is proved.
Klíčová slova v angličtině
Prandtl-Ishlinskii operaor, Homogenization, Heat equation
Autoři
FRANCŮ, J.
Rok RIV
2004
Vydáno
1. 1. 2003
ISSN
0378-4754
Periodikum
Mathematics and Computers in Simulation
Ročník
61
Číslo
3-5
Stát
Nizozemsko
Strany od
591
Strany do
597
Strany počet
7
BibTex
@article{BUT42039,
author="Jan {Franců}",
title="Homogenization of heat equation with hysteresis",
journal="Mathematics and Computers in Simulation",
year="2003",
volume="61",
number="3-5",
pages="7",
issn="0378-4754"
}