Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VĚCHET, S., KREJSA, J.
Originální název
Q-Learning: From Discrete to Continuous Representation
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
Q-learning standard algorithm is restricted by using discrete states and actions. In this case Q-function is usually represented as a discrete table of Q-values. Conversion of continuous variables to adequate discrete variables evokes some problems. Problems can be avoided if the continuous algorithm of Q-learning is used. In this paper we discus method, which is used to convert discrete to continuous algorithm. The method used suitable approximator to replace the discrete table. We choose local approximator called Locally Weighted Regression (LWR) (Atketson &Moore & Shaal, 1996) from the group of memory based approximators.
Klíčová slova
Q-learning, Machine learning, Locally Weighted Regression
Autoři
Rok RIV
2004
Vydáno
23. 8. 2004
Místo
Warsaw, Poland
ISSN
0033-2089
Periodikum
Elektronika
Ročník
XVL
Číslo
8
Stát
Polská republika
Strany od
12
Strany do
14
Strany počet
3
BibTex
@article{BUT42197, author="Stanislav {Věchet} and Jiří {Krejsa}", title="Q-Learning: From Discrete to Continuous Representation", journal="Elektronika", year="2004", volume="XVL", number="8", pages="3", issn="0033-2089" }