Detail publikace

On the asymptotics of the difference equation with a proportional delay

KUNDRÁT, P.

Originální název

On the asymptotics of the difference equation with a proportional delay

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

This paper deals with asymptotic properties of a vector difference equation with delayed argument $$ \Delta x_k=Ax_k+Bx_{\lfloor\lambda k\rfloor},\qquad 0<\lambda<1,\quad k=0,1,2,\dots, $$ where $A,B$ are constant matrices and the term $\lfloor\lambda k\rfloor$ is the integer part of $\lambda k$. Our aim is to emphasize some resemblances between the asymptotic behaviour of this delay difference equation and its continuous counterpart.

Klíčová slova

qualitative properties, delay difference equation

Autoři

KUNDRÁT, P.

Rok RIV

2006

Vydáno

10. 11. 2006

Nakladatel

AGH University of Science and Technology, Krakow

Místo

Krakow, Poland

ISSN

1232-9274

Periodikum

Opuscula Mathematica

Ročník

26

Číslo

3

Stát

Polská republika

Strany od

499

Strany do

506

Strany počet

8

BibTex

@article{BUT43498,
  author="Petr {Tomášek}",
  title="On the asymptotics of the difference equation with a proportional delay",
  journal="Opuscula Mathematica",
  year="2006",
  volume="26",
  number="3",
  pages="499--506",
  issn="1232-9274"
}