Detail publikačního výsledku

On the asymptotics of the difference equation with a proportional delay

KUNDRÁT, P.

Originální název

On the asymptotics of the difference equation with a proportional delay

Anglický název

On the asymptotics of the difference equation with a proportional delay

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

This paper deals with asymptotic properties of a vector difference equation with delayed argument $$ \Delta x_k=Ax_k+Bx_{\lfloor\lambda k\rfloor},\qquad 0<\lambda<1,\quad k=0,1,2,\dots, $$ where $A,B$ are constant matrices and the term $\lfloor\lambda k\rfloor$ is the integer part of $\lambda k$. Our aim is to emphasize some resemblances between the asymptotic behaviour of this delay difference equation and its continuous counterpart.

Anglický abstrakt

This paper deals with asymptotic properties of a vector difference equation with delayed argument $$ \Delta x_k=Ax_k+Bx_{\lfloor\lambda k\rfloor},\qquad 0<\lambda<1,\quad k=0,1,2,\dots, $$ where $A,B$ are constant matrices and the term $\lfloor\lambda k\rfloor$ is the integer part of $\lambda k$. Our aim is to emphasize some resemblances between the asymptotic behaviour of this delay difference equation and its continuous counterpart.

Klíčová slova

qualitative properties, delay difference equation

Klíčová slova v angličtině

qualitative properties, delay difference equation

Autoři

KUNDRÁT, P.

Vydáno

10.11.2006

Nakladatel

AGH University of Science and Technology, Krakow

Místo

Krakow, Poland

ISSN

1232-9274

Periodikum

Opuscula Mathematica

Svazek

26

Číslo

3

Stát

Polská republika

Strany od

499

Strany do

506

Strany počet

8

BibTex

@article{BUT43498,
  author="Petr {Tomášek}",
  title="On the asymptotics of the difference equation with a proportional delay",
  journal="Opuscula Mathematica",
  year="2006",
  volume="26",
  number="3",
  pages="499--506",
  issn="1232-9274"
}