Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
HILSCHER, R. RŮŽIČKOVÁ, V.
Originální název
Riccati inequality and other results for discrete symplectic systems.
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
In this paper we establish several new results regarding the positivity and nonnegativity of discrete quadratic functionals F associated with discrete symplectic systems. In particular, we derive (i) the Riccati inequality for the positivity of F with separated endpoints, (ii) a characterization of the nonnegativity of F for the case of general (jointly varying) endpoints, and (iii) several perturbation-type inequalities regarding the nonnegativity of F with zero endpoints. Some of these results are new even for the special case of discrete Hamiltonian systems.
Klíčová slova
Discrete symplectic system; Quadratic functional; Nonnegativity; Positivity; Riccati inequality; Riccati equation; Conjoined basis; Sturmian theorem
Autoři
HILSCHER, R.; RŮŽIČKOVÁ, V.
Vydáno
31. 8. 2006
ISSN
0022-247X
Periodikum
Journal of Mathematical Analysis and Application
Ročník
322
Číslo
2
Stát
Spojené státy americké
Strany od
1083
Strany do
1098
Strany počet
15
BibTex
@article{BUT43690, author="Roman Šimon {Hilscher} and Viera {Štoudková Růžičková}", title="Riccati inequality and other results for discrete symplectic systems.", journal="Journal of Mathematical Analysis and Application", year="2006", volume="322", number="2", pages="1083--1098", issn="0022-247X" }