Detail publikace

Riccati inequality and other results for discrete symplectic systems.

HILSCHER, R. RŮŽIČKOVÁ, V.

Originální název

Riccati inequality and other results for discrete symplectic systems.

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

In this paper we establish several new results regarding the positivity and nonnegativity of discrete quadratic functionals F associated with discrete symplectic systems. In particular, we derive (i) the Riccati inequality for the positivity of F with separated endpoints, (ii) a characterization of the nonnegativity of F for the case of general (jointly varying) endpoints, and (iii) several perturbation-type inequalities regarding the nonnegativity of F with zero endpoints. Some of these results are new even for the special case of discrete Hamiltonian systems.

Klíčová slova

Discrete symplectic system; Quadratic functional; Nonnegativity; Positivity; Riccati inequality; Riccati equation; Conjoined basis; Sturmian theorem

Autoři

HILSCHER, R.; RŮŽIČKOVÁ, V.

Vydáno

31. 8. 2006

ISSN

0022-247X

Periodikum

Journal of Mathematical Analysis and Application

Ročník

322

Číslo

2

Stát

Spojené státy americké

Strany od

1083

Strany do

1098

Strany počet

15

BibTex

@article{BUT43690,
  author="Roman Šimon {Hilscher} and Viera {Štoudková Růžičková}",
  title="Riccati inequality and other results for discrete symplectic systems.",
  journal="Journal of Mathematical Analysis and Application",
  year="2006",
  volume="322",
  number="2",
  pages="1083--1098",
  issn="0022-247X"
}