Detail publikace

Trigonometric Recurrence Relations and Tridiagonal Trigonometric Matrices

DOŠLÝ, O. PECHANCOVÁ, Š.

Originální název

Trigonometric Recurrence Relations and Tridiagonal Trigonometric Matrices

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

It is shown that every tridiagonal symmetric matrix can be transformed by a special transformation into the so-called tridiagonal trigonometric matrix. The relationship of this transformation to 2*2 trigonometric symplectic system and to three-term trigonometric recurrence relations is discussed as well.

Klíčová slova

Three-term recurrence relation, symplectic difference system, trigonometric transformation, trigonometric system, Sturm-Liouville difference equation

Autoři

DOŠLÝ, O.; PECHANCOVÁ, Š.

Vydáno

26. 6. 2006

Nakladatel

Research India Publications

ISSN

0973-6069

Periodikum

International Journal of Difference Equations

Ročník

2006

Číslo

1

Stát

Indická republika

Strany od

19

Strany do

29

Strany počet

11

BibTex

@article{BUT44112,
  author="Ondřej {Došlý} and Šárka {Pechancová}",
  title="Trigonometric Recurrence Relations and Tridiagonal Trigonometric Matrices",
  journal="International Journal of Difference Equations",
  year="2006",
  volume="2006",
  number="1",
  pages="19--29",
  issn="0973-6069"
}