Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOULA, I., ZEZULA, R.
Originální název
Nonlinear adaptive models for speech enhancement algorithms
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
This paper is focused on comparison of the effectiveness of three different one channel speech enhancement algorithms. These speech enhancement algorithms are based on spectral subtraction method and on different approaches to noise spectrum estimation. The first algorithm estimates noise spectrum on the basis of its statistical characters. Next two algorithms estimate noise spectrum by nonlinear adaptive models. These models are arti-ficial neural networks and adaptive neural-fuzzy interface system. An algo-rithm giving efficiency enhancement of the obtained results was based on the hit rate recognition from the output of a phoneme based speech recognizer based on hidden Markov's models and implemented through the HTK toolkit.
Klíčová slova
estimate of noise power spectral density, one-channel noise cancelation algorithm, spectral subtraction, artificial neural network, adaptive neural-fuzzy interface system
Autoři
Vydáno
30. 9. 2007
Nakladatel
GESTS
Místo
Korea
ISSN
1738-9682
Periodikum
International Transactions on Communication and Signal Processing
Ročník
10
Číslo
7
Stát
Korejská republika
Strany od
138
Strany do
145
Strany počet
9
BibTex
@article{BUT44688, author="Ivan {Koula} and Radek {Zezula}", title="Nonlinear adaptive models for speech enhancement algorithms", journal="International Transactions on Communication and Signal Processing", year="2007", volume="10", number="7", pages="138--145", issn="1738-9682" }