Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠMÍD, P., RAIDA, Z., LUKEŠ, Z.
Originální název
Genetic Neural Networks for Modeling Dipole Antennas
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
The paper deals with original genetic neural networks for modeling wire dipole antennas. A novel approach to learning artificial neural networks (ANN) by genetic algorithms (GA) is described. The goal is to compare the learning abilities of neural antenna models trained by the GA and models trained by gradient algorithms. Developing the original design method based on genetic models of designed electromagnetic structures is the motivation of this work. Two types of ANN, the recurrent Elman ANN and the feed-forward one, are implemented in MATLAB. Results of training abilities are discussed.
Klíčová slova
artificial neural networks, genetic algorithm, wire dipole antenna
Autoři
Rok RIV
2004
Vydáno
1. 12. 2004
Místo
Puerto De La Cruz, Tenerife
ISSN
1109-2750
Periodikum
WSEAS Transactions on Computers
Ročník
6
Číslo
3
Stát
Řecká republika
Strany od
1868
Strany do
1872
Strany počet
5
BibTex
@article{BUT45635, author="Petr {Šmíd} and Zbyněk {Raida} and Zbyněk {Lukeš}", title="Genetic Neural Networks for Modeling Dipole Antennas", journal="WSEAS Transactions on Computers", year="2004", volume="6", number="3", pages="5", issn="1109-2750" }