Detail publikačního výsledku

Extensions from the Sobolev Spaces H1 satisfying prescribed Dirichlet boundary conditions

ŽENÍŠEK, A.

Originální název

Extensions from the Sobolev Spaces H1 satisfying prescribed Dirichlet boundary conditions

Anglický název

Extensions from the Sobolev Spaces H1 satisfying prescribed Dirichlet boundary conditions

Druh

Článek recenzovaný mimo WoS a Scopus

Originální abstrakt

Extensions from $H^1(\Omega_P)$ into $H^1(\Omega)$ (where $\Omega_P\subset\Omega$) are constructed in such a way that extended functions satisfy prescribed boundary conditions on the boundary $\partial\Omega$ of $\Omega$. The corresponding extension operator is linear and bounded.

Anglický abstrakt

Extensions from $H^1(\Omega_P)$ into $H^1(\Omega)$ (where $\Omega_P\subset\Omega$) are constructed in such a way that extended functions satisfy prescribed boundary conditions on the boundary $\partial\Omega$ of $\Omega$. The corresponding extension operator is linear and bounded.

Klíčová slova

extensions satisfying prescribed boundary conditions, Nikolskij extension theorem

Klíčová slova v angličtině

extensions satisfying prescribed boundary conditions, Nikolskij extension theorem

Autoři

ŽENÍŠEK, A.

Rok RIV

2011

Vydáno

01.01.2004

ISSN

0862-7940

Periodikum

Applications of Mathematics

Svazek

49

Číslo

5

Stát

Česká republika

Strany od

405

Strany počet

9

BibTex

@article{BUT45799,
  author="Alexander {Ženíšek}",
  title="Extensions from the Sobolev Spaces H1 satisfying prescribed Dirichlet boundary conditions",
  journal="Applications of Mathematics",
  year="2004",
  volume="49",
  number="5",
  pages="9",
  issn="0862-7940"
}